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1 Introduction

Beliefs play an important role in decision-making under uncertainty; however, beliefs

are not directly observable. In economics, we generally infer beliefs from choices,

but choices are determined both by beliefs and preferences. Thus, any procedure for

eliciting beliefs must make important assumptions about the structure of preferences.

The current state-of-the-art in eliciting probabilistic beliefs is the binarized quadratic

scoring rule (BQSR) (Hossain and Okui, 2013).1 The common understanding of the

BQSR is that it is incentive compatible for all expected utility maximizers, as well

as some non-expected utility maximizers. The BQSR pays people in compound lot-

teries, relying on an easily overlooked assumption about preferences: the reduction

of compound lotteries.

In this paper, we test empirically whether 1) this reduction assumption is violated

by participants for the types of compound lotteries involved in the BQSR, 2) the

failure of reduction predicts accuracy in the BQSR, and 3) a procedure that does

not require reduction elicits more accurate beliefs from non-reducers. We test these

pre-specified hypotheses using a simple, two-stage experiment. In the first stage,

participants make choices between two compound lotteries. In the second stage,

participants report their beliefs about objective probabilities. One of the compound

lotteries in each of the first-stage choices corresponds to the compound lottery the

participant faces if they choose to accurately report the objective probability elicited

using the BQSR. In addition, we elicit corresponding objective probabilities using a

novel procedure, the Rank-Ordered Elicitation (ROE), which does not require the

reduction of compound lotteries.

We find that most participants choose compound lotteries inconsistent with reduc-

tion and that this behavior predicts inaccuracy in the BQSR. Only 30% of participants

are always “reducers,” meaning that they consistently choose the compound lottery

with the highest expected payoff.2 In line with theory, participants whose revealed

preferences are consistent with reduction in the relevant lottery are 13 percentage

points more likely to report the corresponding objective probability accurately than

1See Charness et al. (2021) for a comprehensive review of belief elicitation methods used in
experimental economics.

2This does not imply that most people do not choose consistently with reduction in other settings
or for other sets of compound lotteries. Our goal is to quantify the extent of reduction-consistent
revealed preferences for the lotteries that participants face under the BQSR in the lab.
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those who choose the compound lottery with the lower expected payoff. Unexpect-

edly, this difference in accuracy persists in the ROE. Indeed, the BQSR and ROE

perform similarly to each other for both reducers and non-reducers. We further test

for the role of reduction in the BQSR by comparing reducers to non-reducers when

reporting a 50% probability. As theoretically predicted, there is no detectable differ-

ence between the performance of reducers and non-reducers in reporting the centered

probability.

In summary, while most participants do not display the preferences consistent

with reduction required for incentive compatibility of the BQSR, removing the need

for reduction in another procedure does not improve the accuracy of reported beliefs.

These results highlight the need to expand our selection criteria for belief elicitation

procedures. Behavioral economics establishes the roles of attention, heuristics, and

many other biases in economic decision-making. In line with Danz et al. (2022), we

suggest that belief elicitation procedures should account for these behavioral factors,

in addition to theoretical incentive compatibility.3

We consider elicitations of the form “what is the probability that event E occurs?”

For any reported belief p̃ about this probability, the BQSR results in a compound

lottery. If the event occurs, the participant is paid a monetary reward with the

probability 1 − (1 − p̃)2. If the event does not occur, the participant receives the

monetary reward with probability 1− p̃2.
Without an assumption of reduction, there is no guarantee that the compound lot-

tery the participant is compensated with under truth-telling is most-preferred among

all other available compound lotteries. For instance, the compound lottery that re-

sults from reporting a belief of 50% pays the monetary reward with 75% probability

regardless of whether the event occurs. Consider choosing between that lottery, which

pays a 75% chance with a 100% chance, and the compound lottery for accurately re-

porting a belief of 1
3
: 33% chance of a 56% chance and 67% chance of an 89% chance.

The latter lottery pays a higher expected simple lottery (78%), but it is reasonable

to believe a participant would in fact prefer the lottery that does not correspond to

accurate reporting.

To avoid the reduction assumption on compound lotteries, we develop a new

procedure to elicit beliefs: the ROE. The ROE draws inspiration from multiple price

lists by asking participants to rank an option in which payment is based on whether

3Danz et al. (2022) refer to this holistic criterion as “behavioral incentive compatibility.”
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the event E of interest occurs relative to a list of objective lotteries that pay with

known probabilities. The intuition for this procedure is that, if a participant prefers

to be paid based on whether E occurs to being paid with 50% probability, then the

participant believes there is a greater than 50% probability that E occurs.

We make three contributions to the literatures on reduction and belief elicitation.

First, we document that a majority of people reveal preferences inconsistent with

reduction of the specific compound lotteries used to incentivize accurate reporting

in the BQSR. Concurrently, Danz et al. (2022) also find that people often do not

choose the compound lottery that maximizes expected payoff in lotteries relevant to

the BQSR. We make an additional contribution through our intra-participant design

by providing the first evidence that people who fail to reduce are less likely to report

accurate beliefs than those who reduce. This difference is mitigated in the elicitation

of a centered probability (50%), affirming the importance of the reduction assumption

in the BQSR. We then show that addressing the failure of the reduction assumption

theoretically using the ROE does not increase accurate reporting.

A sizable empirical literature explores the plausibility of the axiom of the reduction

of compound lotteries, dating at least to Bar-Hillel (1973). As Hajimoladarvish (2018)

summarizes, reduction has been tested by comparing the choices between compound

lotteries and their equivalent simple lotteries (Harrison et al., 2015), or by eliciting

and comparing the certainty equivalents for both compound and simple lotteries (Ab-

dellaoui et al., 2015). Support for the axiom is mixed, with findings that appear to

be sensitive to framing (Bernasconi and Bernhofer, 2020), details of the experimental

design (Harrison et al., 2015), and the comparison method (Hajimoladarvish, 2018).

Our finding that many participants behave inconsistently with the reduction of com-

pound lotteries is therefore not in conflict with existing literature, although it is the

first to evaluate reduction as it relates to accurate reporting in the BQSR.

The use of probability currency to induce incentive compatibility in belief elici-

tation for people with non-risk-neutral preferences dates to the 1960s (Smith, 1961;

Roth and Malouf, 1979). Hossain and Okui (2013) were the first to generalize the

method of binarizing any proper scoring rule to achieve incentive compatibility for a

wide range of preferences. Since then, the BQSR has been used in many applications

(see, for example, Babcock et al., 2017 or Dianat et al., 2022). Recently, Danz et al.

(2022) and Healy and Kagel (2022) identify issues with eliciting beliefs, raising ques-

tions about the empirical performance of the BQSR. We test one explanation for less
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than theoretically-optimal performance of the BQSR: preferences inconsistent with

the reduction of compound lotteries.

The remainder of the paper is structured as follows. Section 2 gives a theoretical

treatment of the BQSR and ROE, showing that the BQSR requires reduction for

incentive compatibility while the ROE does not. Section 3 presents the experimental

design. Section 4 reports the main findings and the results of pre-specified hypotheses.

Section 5 concludes.

2 Theory

In this section, we first provide the precise preference assumptions under which the

Binarized Quadratic Scoring Rule (BQSR) is incentive compatible. Then, we present

the Rank-Ordered Elicitation (ROE) for eliciting beliefs, which builds on the use of

multiple price lists. Lastly, we show that the ROE requires a weaker assumption than

reduction to be incentive compatible.

2.1 Binarized Quadratic Scoring Rule

The BQSR is part of a longer tradition in experimental economics of using probabilis-

tic currency to linearize preferences. As shown in Hossain and Okui (2013), binarizing

any proper scoring rule results in a procedure that yields incentive compatible elici-

tation of the target statistic under any expected utility preferences (regardless of risk

preferences) and some non-expected utility preferences.

The stated key assumption in Hossain and Okui is monotonicity over binary ob-

jective lotteries. That is, a participant prefers a simple lottery over outcomes a and

b to another simple lottery over those outcomes if and only if it yields the better

outcome more often. Formally, let L (p) be the binary lottery that yields outcome a

with probability p and outcome b with probability 1− p and assume a � b. The key

assumption is that preferences over simple lotteries can be represented by a preference

functional V (·) with the property that V (L (p)) > V (L (p∗))⇔ p > p∗.

Theorem 1 of Hossain and Okui states that under suitable requirements on the

underlying scoring rule, the optimal action taken by a participant meeting this key

assumption in the binarized version of the scoring rule will be the same as the action

taken by a risk-neutral participant when incentivized by the standard non-binarized
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version of the rule. Thus, any scoring rule that is incentive compatible for a risk-

neutral participant can be extended through binarization to be incentive compatible

regardless of risk preferences.

Although the monotonicity assumption on binary objective lotteries is key to the

incentive compatibility of the BSR, it is not sufficient. As Hossain and Okui note,

they “also assume that the agent’s preference under the BSR depends only on the

probability of winning.” Implicit in this assumption is that a participant’s preferences

over the compound lotteries that yield outcome a with expected probability p are the

same as their preferences over simple lotteries that yield outcome a with probability

p. To demonstrate the need for reduction in BSR more concretely, we formalize our

analysis by first presenting some notation.

2.1.1 Environment

We assume that participants make choices on the basis of well-defined subjective

probabilities about events, but do not necessarily have preferences consistent with

expected utility. The environment follows some of the conventions in Machina (1995).

Our analysis of the BQSR makes use of the following objects and types of lotteries:

The set of outcomes is X = {a, b}.4 The set of events is E ∈ 2S , in which

S = {..., s, ...} are states of the world. Simple Lotteries are objective lotteries of

the form S = (a ◦ p, b ◦ (1 − p)), where p ∈ [0, 1]. Compound Lotteries are objective

lotteries of the form C = (S1 ◦ p, S2 ◦ (1− p)), where p ∈ [0, 1], and S1, S2 are simple

lotteries. Compound Subjective Lotteries mix objective probabilities and subjective

events and are of the form H = (S1 ◦ E, S2 ◦ Ec) where S1, S2 are simple lotteries, E

is an event and Ec is the complement of that event. Finally, the set of all Compound

Subjective Lotteries is H .

2.1.2 Incentive Compatibility and the BQSR

The BQSR asks participants to choose among a family of compound subjective lot-

teries indexed by probability p̃ (the “reported” probability). These lotteries have the

following form:

H(p̃) = (S(p̃) ◦ E, S(1− p̃) ◦ Ec) ,

4Generally, the set of outcomes is assumed to be some finite set, but since both of the procedures
discussed in this paper use only two outcomes we have included this restriction.
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where the simple lottery S(p̃) is:

S(p̃) =
(
a ◦ 1− (1− p̃)2 , b ◦ (1− p̃)2

)
Let p∗ be the participants “true” belief about the probability of some event. Incentive

compatibility requires ∀p̃ ∈ [0, 1]/p∗ H(p∗) � H(p̃). As in Hossain and Okui (2013),

the only dominance assumption we will place on lottery is on simple lotteries. How-

ever, we will only be able to compare two lotteries using this dominance assumption

if those lotteries can be mapped into simple lotteries.

Thus, a proof of incentive compatibility will require some way of mapping sub-

jective compound lotteries into simple (objective) lotteries. This proof requires two

assumptions: First, an assumption to eliminate the subjectivity; second, an assump-

tion to eliminate compounding.

With this overview, we can formally state the axioms needed for the incentive

compatibility of the BQSR. Let % be a complete, reflexive, and transitive preference

relation over H . The assumptions we make of % are:

Axiom 1: Monotone on Simple Lotteries:

For a � b, p > p′ ⇔ (a ◦ p, b ◦ (1− p)) � (a ◦ p′, b ◦ (1− p′)).

Axiom 2: Subjective/Objective Replacement on Simple Lotteries:

∃p ∈ [0, 1] s.t.[S1 ◦ E, S2 ◦ Ec] ∼ (S1 ◦ p, S2 ◦ (1− p)).

Axiom 3: Reduction:

For any p1, p2, π ∈ [0, 1]

(a ◦ p1, b ◦ 1− p1) ◦ π, (a ◦ p2, b ◦ 1− p2) ◦ (1− π) ∼
a ◦ [p1π + p2 (1− π)] , b ◦ [(1− p1) π + (1− p2) (1− π)] .

We can now prove incentive compatibility.

Proof: Where p∗ is the participant’s true belief about the probability of event E,

incentive compatibility requires:

∀p̃ :∈ [0, 1]/p∗ (S(p∗) ◦ E, S(1− p∗) ◦ Ec) � (S(p̃) ◦ E, S(1− p̃) ◦ Ec)

By Axiom 2, we can replace the subjective lottery contingent on event E with an

7



objective lottery that contingent on objective probability p∗, the participants belief

about the probability of E:

(S(p̃) ◦ E, S(1− p̃) ◦ Ec) ∼ (S(p̃) ◦ p∗, S(1− p̃) ◦ (1− p∗))

This indifference can be applied to both sides of the incentive compatibility condi-

tion. Since preferences are transitive, this results in a characterization of incentive

compatibility involving only objective probabilities:

∀p̃ :∈ [0, 1]/p∗ (S(p∗) ◦ p∗, S(1− p∗) ◦ (1− p∗)) � (S(p̃) ◦ p∗, S(1− p̃) ◦ (1− p∗))

Applying Axiom 3, these compound lotteries can be replaced with their induced

simple lotteries. Again, by transitivity, this generates an incentive compatibility

characterization involving only simple lotteries to which the dominance axiom can be

applied:

∀p̃ :∈ [0, 1]/p∗
(
a ◦ p∗

(
1− (1− p∗)2

)
+ (1− p∗)

(
1− p∗2

)
, b ◦ p∗ (1− p∗)2 + (1− p∗) p∗2

)
�
(
a ◦ p∗

(
1− (1− p̃)2

)
+ (1− p∗)

(
1− p̃2

)
, b ◦ p∗ (1− p̃)2 + (1− p∗) p̃2

)
Applying Axiom 1, the condition is true if and only if:

p∗
(
1− (1− p∗)2

)
+ (1− p∗)

(
1− p∗2

)
> p∗

(
1− (1− p̃)2

)
+ (1− p∗)

(
1− p̃2

)
Since the right side is strictly quasi-concave and maximized at p̃ = p, the procedure

is incentive compatible.

2.1.3 Why might the incentive compatibility of the BQSR fail?

It is easy to construct preferences for which incentive compatibility fails even when

the participant’s preferences are monotone on binary objective lotteries (Axiom 1).

These constructions involve a failure either to replace subjective events with objective

probabilities (Axiom 2), or to reduce compound to simple lotteries (Axiom 3).

Every belief elicitation procedure that attempts to map subjective beliefs into an

objective probability will require a comparison of subjective and objective lotteries.

Thus, a failure of Axiom 2 (or some related assumption) would cause problems for

any probabilistic belief elicitation. Thus, we focus on the types of preference that

might violate the reduction axiom (Axiom 3).
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Example: A participant believes the probability of event E is 1
3
. The participant is

indifferent between $10 if event E occurs and $10 with a 1
3

chance. However, the

participant strictly prefers:

($10 ◦ 0.75, $0 ◦ 0.25) ◦ 2

3
, ($10 ◦ 0.75, $0 ◦ 0.25) ◦ 1

3

to

($10 ◦ 0.89, $0 ◦ 0.11) ◦ 2

3
, ($10 ◦ 0.56, $0 ◦ 0.44) ◦ 1

3

These are precisely the compound lotteries that result from reporting respectively

50% and 33.3% in the BQSR for this participant once the subjective events are re-

placed with the objective probabilities associated with the participant’s beliefs about

those events. These preferences are inconsistent with reduction and would lead the

participant to prefer reporting a 50% belief in the BQSR to reporting their true belief

of (approximately) 33.3%.5

An extreme form of this failure in reduction would occur if a participant’s prefer-

ences over compound lotteries are such that they maximize the minimum probability

of the better outcome over all contingencies in a compound lottery. In fact, this would

lead a participant to always report 50% in the BQSR.

The preferences in this example are consistent with a form of aversion to variance

within compound lotteries.6 On the other hand, the ROE does not rely on the kind of

compound lotteries which are problematic in these examples. Specifically, reduction

is not required.

2.2 Rank-Ordered Elicitation

The Rank-Ordered Elicitation (ROE) builds on a multiple price list methodology.

Informally, it draws on the following observation: if a participant prefers to be paid,

for instance, a with a 50% chance to being paid a if the event E occurs, but prefers

to be paid if E happens to being paid with a probability 40%, then their belief about

the probability that E occurs must be within the range 40% to 50%.

5We note that the reduced forms of these lotteries are not that different. They reduce to 0.78
and 0.75 probabilities of winning $10, respectively. These weak incentives are a general problem for
eliciting probabilistic beliefs with a scoring rule.

6This failure could be responsible for the pull-to-center effect found in Danz et al. (2022).
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2.2.1 Description of ROE

While the BQSR “pays” in compound subjective lotteries, the ROE pays in what

we call simple mixtures, which are probability distributions over simple (objective)

lotteries and simple subjective lotteries (a type of lottery that does not appear in the

proof of incentive compatibility for the BQSR).

We define each of these as follows: Simple Subjective Lotteries are lotteries of the

form SE = (a ◦ E, b ◦ Ec) where E is an event and Ec is the complement of that

event; Simple Mixtures of the form M = (L1 ◦ p1, L2 ◦ p2, ..., Ln ◦ pn) where pi ∈ [0, 1]

with
∑n

i=1 pi = 1, and each Li is either a simple lottery or a simple subjective lottery;

The set of all Simple Mixtures is M .

Formally, to elicit the probability of event E, construct a set of m simple objective

lotteries {Spi}
m
i=1 of the form Spi = pi ◦ a, (1− pi) ◦ b with pi > pi+1. In addition,

construct a single simple subjective lottery SE for the event E in question.

Eliciting a participant’s belief about the event E amounts to determining the

position of the lottery SE in their linear preference ordering among the objective

lotteries {Spi}
m
i=1.

To elicit the position that this lottery falls in the linear order, ask the participant

to rank SE in their preferred position among the ordered simple objective lotteries

{Spi}
m
i=1. To incentivize truthful ranking, pay the participant by randomly choosing

one objective lottery Spi and paying according to whichever lottery the participant

ranks higher: the objective lottery Spi or the subjective lottery SE. In other words, if

the participant ranks Spi above SE, pay according to Spi . Otherwise, pay according

to SE. An example is given in Table 1.

This procedure produces simple mixtures of the form:
(
L1 ◦ 1

m
, ..., Lm ◦ 1

m

)
where

Li is whichever lottery from each pair Spi , SE that the participant ranks higher.
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Subjective Lottery (H) Objective Lotteries (Rpi)

$10 if Event is True 0% chance of $10

20% chance of $10

40% chance of $10

60% chance of $10

80% chance of $10

100% chance of $10

Table 1: ROE Example

The participant chooses where to rank the subjective lottery on the left among the objective

lotteries on the right.

2.2.2 Incentive Compatibility and the ROE

First, we state the axioms needed for the incentive compatibility of our procedure.

Let % be a complete, reflexive, and transitive preference relation over M . The as-

sumptions we make of % are:

Axiom 1: Monotone on Binary Objective Lotteries:

For a � b, p > p′ ⇔ (a ◦ p, b ◦ (1− p)) � (a ◦ p′, b ◦ (1− p′)).

Axiom 2’: Subjective/Objective Replacement on Degenerate Simple Lotteries:7

∃p ∈ [0, 1] s.t.[a ◦ E, b ◦ Ec] ∼ (a ◦ p, b ◦ (1− p))

Axiom 3’: Statewise Monotone on Simple Mixtures:

L∗i � Li ⇔ (L1 ◦ p1, ..., L∗i ◦ pi, ..., Ln ◦ pn) � (L1 ◦ p1, ..., Li ◦ pi, ..., Ln ◦ pn)

We can now prove incentive compatibility of the ROE under these axioms.

Proof: By Axiom 1, {Spi}
m
i=1 = Sp1 � Sp2 � ... � Spm is a linear order. Let p∗

7Axiom 2’ is a weakening of 2.
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be the participant’s belief about event E. That is, p∗ solves SE ∼ (a ◦ p, b ◦ (1− p))
according to Axiom 2.

Denote this objective lottery by Sp∗ . By Axiom 1, Sp∗ is somewhere in the linear

order of {Spi}
m
i=1. By transitivity, SE takes the same place in this linear order. Thus,

the participant’s preference relation on {{Spi}
m
i=1 , SE} is a linear order. Let i∗ be the

smallest pi such that Spi � SE, and let i = 0 if SE � Sp1 . We call i∗ the participant’s

belief type, in which a participant of belief type i∗ has a belief p∗ ∈ [pi∗ , pi∗+1]. There

are n+ 1 possible types i∗ ∈ (0, ..., n).

Let Li be the simple mixture that results from ranking SE between Spi and Spi+1
.

This is the mixture:

Li =

(
Sp1 ◦

1

m
, ..., Spi ◦

1

m
,SE ◦

1

m
, ..., SE ◦

1

m

)
Incentive compatibility of the ROE requires that for a player of belief type i∗, ∀i ∈
{0, ..., n} : Li∗ % Li. Consider Li∗ and Li∗+1. These lotteries are:

Li∗ =

(
Sp1 ◦

1

m
, ..., Spi∗ ◦

1

m
,SE ◦

1

m
, ..., SE ◦

1

m

)

Li∗+1 =

(
Sp1 ◦

1

m
, ..., Spi∗ ◦

1

m
,Spi∗+1

◦ 1

m
,SE ◦

1

m
, ..., SE ◦

1

m

)
These lotteries differ by a single replacement of SE with Spi∗+1

. Since SE % Spi∗+1
,

Li∗ % Li∗+1 by Axiom 3’. Additional applications of Axiom 3’ reveal that Li � Li+1

for i > i∗ and Li � Li−1 for i < i∗. Thus, Li∗ % Li ∀i ∈ {0, ..., n}. The procedure is

incentive compatible.

2.2.3 Comparing Statewise Monotonicity and Reduction

Statewise Monotone on Simple Mixtures (Axiom 3’) and reduction (Axiom 3) are two

fundamentally different preference assumptions. Axiom 3’ is a dominance relation

(the statements involve �) and Axiom 3 is a substitution axiom (the statements

involve ∼). What further complicates the matter is that the types of lotteries involved

in the BQSR (compound subjective lotteries) are different from the types involved in

the ROE (simple mixtures). In fact, it is precisely this dichotomy that eliminates the

need for reduction in the ROE.

If we were to extend the reduction axiom to assume that participants also reduce
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simple mixtures, statewise monotonicity would indeed be a weaker assumption than

reduction. Since reporting truthfully maximizes the probability of the good outcome

in each sub-lottery in the simple mixture paid by the ROE, reporting truthfully would

also maximize the expected probability. Thus, the ROE is also incentive compatible

for participants who reduce simple mixtures.

On the other hand, the reverse is not true. That is, the BQSR may not be incentive

compatible for a participant who does not reduce the compound lotteries involved in

the BQSR, but who does have statewise monotonic preferences.

In addition, statewise monotonicity is required for participants to treat the incen-

tives presented in multiple tasks independently within an experiment with random

task payment (Azrieli et al., 2018). Therefore, any experiment with random task

payment structure that has the BQSR as one of the tasks requires both Axioms

3 and 3’. Thus, within these experiments, the additional assumptions required for

ROE to be incentive compatible are strictly weaker than those required for incentive

compatibility of the BQSR.

3 Experimental Design

The goal of this experiment is to test whether reducers of compound lotteries report

more accurate beliefs that non-reducers in a belief elicitation procedure that requires

reduction for incentive compatibility; then, test whether this gap is reduced in a belief

elicitation procedure that does not require reduction. To this end, the experiment is

divided into two parts. Part one measures whether a participant chooses the com-

pound lottery with the highest expected probability of winning. Part two elicits their

beliefs using the two belief elicitation procedures. In part one of the experiment,

participants complete two tasks. Each task requires a choice between two compound

lotteries. One task, which we call the “1/3 lottery task,” is the choice between (1)

and (2).
1

3
(75%) +

2

3
(75%) (1)

1

3
(56%) +

2

3
(89%) (2)

The other task, which we call the “5/6 lottery task,” is the choice between (3) and

(4).
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1

6
(75%) +

5

6
(75%) (3)

1

6
(31%) +

5

6
(98%) (4)

The order of the tasks is randomized, as well as the order (from top to bottom) of

the two compound lotteries within each task.

The names of the compound lottery tasks reflect their correspondence to the lot-

teries the participant faces under the Binarized Quadratic Scoring Rule (BQSR) when

choosing between reporting the objective probabilities being elicited in part two of

the experiment or reporting 1/2. That is, a participant who reports 1/2 in the BQSR

has a 75% probability of winning the prize regardless of the outcome of the event.

On the other hand, if the participant reports 1/3 in the BQSR (one of the objective

probabilities), they have a 1/3 chance of a 56% probability of winning and a 2/3

chance of a 89% probability of winning, corresponding to the two compound lotteries

in the 1/3 lottery task. By eliciting these preferences over compound lotteries, we

can say whether a participant faced with the choice of whether to accurately report

the objective probability under the BQSR might not do so because there exists at

least one compound lottery that they prefer over the compound lottery that offers

the highest expected probability of winning.

We call the participants who choose the 75% lottery “non-reducers” in that task.

We refer to the complement of this subgroup as “reducers,” but it is important to

note that a participant in this subgroup could be a non-reducer when the alternative

is some other compound lottery. So, reducer and non-reducer attributes are task-

specific (i.e., based on whether the participant chose the lottery with the highest

expected probability of winning in that task).

In part two of the lab experiment, participants complete four belief elicitation

tasks. Each task is the elicitation of the participant’s belief about the probability of

a set of numbers being rolled by a fair, six-sided die. Two of the belief elicitations use

the BQSR and two use the Rank-Ordered Elicitation (ROE). For each procedure, the

two belief elicitations are for (1) a set of numbers that correspond to a 1/2 probability

(either {1,3,5} or {2,4,6}), and (2) a set of numbers that correspond to either a 1/3

({5,6}) or a 5/6 ({1,2,3,4,5}) probability. For ease of exposition, we refer to (1) as

the centered probability and (2) as the non-centered probability. The instructions for

each belief elicitation procedure immediately precede the two belief elicitations for
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that procedure. The order of the belief elicitation procedures, the set of numbers for

the centered probability, the set of numbers for the non-centered probability, and the

order in which beliefs are elicited within each procedure are block randomized.

We chose to elicit a centered and a non-centered probability because the predicted

behavior of non-reducers differs between these elicitations. As we demonstrate in Ap-

pendix A, accurately reporting 50% in the centered elicitation is consistent with a

wide variety of preferences that are also inconsistent with reduction.8 So, if reduc-

tion affects the empirical performance of the BQSR in the elicitation of the centered

probability, we would expect for the difference between reducers and non-reducers to

decrease in the centered elicitation.

3.1 Implementation

Participants in the experiment were recruited through Prolific.co. They were paid

$3 for completing the experiment and could earn another $5 based on their choice in

the randomly drawn task at the end of the experiment, for total potential earnings of

$8. After clicking on the link to start the experiment, participants received instruc-

tions on the general form of the experiment, their anonymity, and their payment for

completing the experiment. Then the participants completed the two tasks in part

one of the experiment and the four tasks in part two of the experiment for a total of

six tasks. The experiment was concluded by informing participants which of the six

tasks was randomly selected for payment and completing the randomization required

to determine payment for that task. Screenshots of the full experiment are included

in the Online Appendix. We recruited a total of 603 participants in July 2021. They

took an average of 18.5 minutes to complete the survey and 73% earned the full $8.

Table 2 shows the basic demographics of the sample provided by Prolific. We did not

collect demographic data as part of the experiment.

8Under reduction, indifference curves are linear over the pairs of sublotteries resulting from the
BQSR. For the elicitation of a 50% belief, incentive compatibility extends to preferences that generate
convex indifference curves over these sublotteries.
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N Mean

Age 581 26.0

(6.03)

Man 577 0.55

Ethnicity 574

White 0.59

Black 0.19

Mixed 0.13

Asian 0.04

Other 0.06

Table 2: Demographic Characteristics from Prolific

Note: Man and Ethnicity are sample proportions. Standard deviation is in parentheses.

4 Results

In this section, we first present the descriptive results of the experiment for the two

types of tasks. Then, we test our three pre-specified hypotheses. Finally, we discuss

and present further results.

4.1 Descriptive Statistics

The results of the compound lottery tasks in Table 3 show that participants are

close to evenly split between “always reducers” (30%), “never reducers” (30%), and

“sometimes reducers” (40%). Sometimes reducers predominantly choose to reduce

when faced with the 5/6 lottery task and do not reduce when faced with the 1/3

lottery task.

The results of the belief elicitation tasks in Figure 1 show that both procedures

elicited beliefs that are broadly consistent with the objective probabilities. The modal

reported belief in each panel is the objective probability. For the non-centered prob-

abilities, the mean of each distribution is between the objective probability and the

midpoint of the support (50%).
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1/3 Lottery Task

No Yes

5/6 Lottery Task
No 29.85 9.62

Yes 30.85 29.68

Table 3: Consistency of compound lottery preferences with reduction

Note: Each cell shows the percentage of participants whose choices were (“yes”) or were not (“no”)
consistent with reduction in each compound lottery task. For example, the “No/No” cell gives the
percentage of participants who chose the constant 75% chance of winning the $5 in both the 1/3
and 5/6 lottery tasks. All participants fall into one of the four cells, so that the percentages in the
cells sum to 100%.

4.2 Pre-registered Hypotheses

We test three pre-specified hypotheses. The motivation for these hypotheses is that

we want to learn whether the BQSR’s suboptimal empirical performance is due to

a failure of the assumption that people’s preferences are consistent with reduction.

We first want to know whether a procedure that does not require reduction yields

more accurate reporting than the BQSR. Then, whether reducers are more likely to

report accurately than non-reducers in the BQSR. Lastly, we want to learn if any

difference in performance between the two belief elicitation procedures is correlated

with preferences inconsistent with reduction. We use the elicitation of non-centered

probabilities exclusively to test these hypotheses.

Hypothesis 1 The proportion of participants who accurately report the objective

non-centered probability is higher using the ROE compared to the BQSR.

Hypothesis 2 The proportion of reducers is higher than the proportion of non-

reducers who accurately report the objective non-centered probability using the BQSR.

Hypothesis 3 The difference between the ROE and BQSR in the proportion of par-

ticipants who accurately report the objective probability is larger for non-reducers than

for reducers.

Accuracy is assessed based on the relevant interval. So, when reporting the belief

that a 5 or 6 is rolled by a fair, six-sided die, a participant would be counted as
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Figure 1: Distribution of reported beliefs, by elicitation procedure and objective
probability

Note: Margin labels indicate the elicitation procedure and objective probability. Solid lines
represent the objective probability. Dashed lines represent the mean of the reported beliefs, where
the ROE beliefs are assigned to the midpoint of the reported bin.

reporting 33% accurately if they report the interval 30-35% in the ROE and report any

percentage from 30-35 in the BQSR. These intervals are dictated by the 5 percentage

point bins used in the ROE.

We test Hypothesis 1 by estimating:

accurateit = α + β1[ROE]it + εit (5)

using data from the non-centered probabilities only, where accurateit is a binary
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variable equal to one if participant i accurately reports in task t and [ROE]it is a

binary variable equal to one if the belief is elicited using the ROE. Standard errors

are clustered at the participant level.

For the next two hypotheses, we define participants as either reducers or non-

reducers.9 Since the reduction of compound lotteries is only theoretically relevant to

the BQSR, participants are defined based on their choice in the compound lottery

task in part one of the experiment that corresponds to the non-centered belief elicited

using the BQSR. That is, participants are classified as non-reducers if they were

randomly assigned to report the objective probability 1/3 using the BQSR and chose

the constant 75% probability in the 1/3 lottery task. If they were instead randomly

assigned to report the objective probability 5/6 using the BQSR, participants are

classified as non-reducers if they chose the constant 75% probability in the 5/6 lottery

task.

We test Hypothesis 2 that reducers report more accurate beliefs using the BQSR

than non-reducers by estimating:

accuratei = α + β1[non-reducer]i + εi (6)

using data from the non-centered probability elicited using the BQSR only.

We test Hypothesis 3 that the difference in accuracy between the ROE and BQSR

is due to non-reducers reporting less accurately in the BQSR compared to the ROE

by estimating:

accurateit = α+β11[non-reducer]i +β21[ROE]it +β31[non-reducer]i ∗ 1[ROE]it + εit

(7)

using data from the non-centered probabilities only.

We find no evidence in favor of Hypothesis 1 that the ROE elicits more accurate

reports than the BQSR. Regression results in column (1) of Table 4 show that the

coefficient (-3.5 p.p.) is the opposite of the anticipated positive difference between

the ROE and the BQSR. The 95% confidence interval bounds the positive difference

at 1.1 percentage points.10 This and all other results are robust to inclusion of block-

9This definition is distinct from the always/sometimes/never reducers described at the beginning
of this section.

10Ex ante power calculations for this sample size gave us an 80% probability of detecting an effect
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randomization stratum fixed effects, as shown in Appendix Table B.1.

On the other hand, we find strong evidence in favor of Hypothesis 2 that reducers

report more accurately than non-reducers in the BQSR. Regression results in column

(2) of Table 4 show that the proportion of reducers who accurately report the objective

probability is approximately 13 p.p. (SE = 4.0 p.p.) larger than the proportion of

non-reducers. This difference is a 32.5% increase over the baseline 40% of non-reducers

who accurately report the objective probability.

(1) (2) (3)

Constant 0.466∗∗∗ 0.532∗∗∗ 0.532∗∗∗

(0.020) (0.029) (0.029)

ROE -0.035 -0.047

(0.024) (0.033)

Non-reducer -0.130∗∗∗ -0.130∗∗∗

(0.040) (0.040)

Non-reducer × ROE 0.024

(0.047)

Observations 1,206 603 1,206

Adjusted R2 0.000 0.015 0.013

Table 4: Accuracy for reducers and non-reducers in the BQSR and ROE tasks

Note: Estimated coefficients are from linear regressions of the accuracy dummy variable on the
indicated regressors. Unit of observation is the participation-elicitation pair. Sample in columns 1
and 3 is all non-centered elicitations. Sample in column 2 is non-centered BQSR elicitations only.
Standard errors clustered at the participant level in columns 1 and 3 in parentheses.
Heteroskedasticity-robust standard errors in column 2 in parentheses. ***: 0.01, **: 0.05, *: 0.1.

Our last pre-specified hypothesis was predicated on the positive difference hypoth-

size of 6.6 percentage points.
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esized in Hypothesis 1; however, we found no such difference. Testing this hypothesis

still allows us to learn whether there is a consistent difference between reducers and

non-reducers in a procedure that does not require reduction. Regression results in

column (3) of Table 4 show no difference in the differences between reducers and non-

reducers when comparing the accuracy of these two subgroups in the ROE versus

the BQSR. Recall that the reducer attribute is determined based on the compound

lottery that corresponds to the objective non-centered probability for the BQSR. So,

the difference in differences is comparing the relative performance of two fixed groups

across the belief elicitation procedures.

4.3 Discussion & Further Results

From our pre-specified hypotheses, we learn that non-reducers report less accurate

beliefs; however, using a procedure that theoretically eliminates the need for reduction

has no effect on this difference in accuracy between reducers and non-reducers. The

natural subsequent question is: Does non-reduction directly affect the performance of

the BQSR, or is non-reduction proxying for another characteristic like mental acumen

or inattention?

To answer this question, we compare the accuracy of reducers and non-reducers

in the 50% elicitation. Recall that we choose to use the elicitation of non-centered

probabilities exclusively for our pre-specified hypotheses because accurately reporting

50% in the centered elicitation is consistent with a wide variety of preferences that are

inconsistent with reduction. If non-reduction predicts performance in the BQSR, but

the relationship is due to a non-preference characteristic correlated with preferences

for reduction, then we would expect that characteristic would similarly affect people

in the elicitation of the centered probability as the non-centered probability. To test

this hypothesis, we estimate the following equation using the BQSR elicitations:

accurateit = α + β11[non-reducer]i + β21[non-centered]it+

β31[non-reducer]i ∗ 1[non-centered]it + εit
(8)

If non-reducers report similarly for centered and non-centered probabilities, we would

expect β3 = 0. Instead, column 3 of Table 5 shows that we can reject that hypothesis.

The gap in accuracy between reducers and non-reducers is wider in elicitations of non-
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centered probabilities by 8.5 p.p. (SE = 4.3 p.p.). This result provides evidence that

non-reduction plays a direct role in the performance of the BQSR.

(1) (2) (3)

Constant 0.634∗∗∗ 0.713∗∗∗ 0.736∗∗∗

(0.023) (0.018) (0.026)

Non-reducer -0.088∗∗∗ -0.045

(0.032) (0.037)

Non-centered elicitation -0.247∗∗∗ -0.204∗∗∗

(0.022) (0.030)

Non-reducer × Non-centered elicitation -0.085∗∗

(0.043)

Observations 1,206 1,206 1,206

Adjusted R2 0.007 0.062 0.071

Table 5: Accuracy for reducers and non-reducers in centered versus non-centered

probabilities in the BQSR tasks

Note: Estimated coefficients are from linear regressions of the accuracy dummy variable on the

indicated regressors. Unit of observation is the participation-elicitation pair. Sample is all BQSR

elicitations, both centered (50%) and non-centered (not 50%). Standard errors clustered at the

participant level in parentheses. ***: 0.01, **: 0.05, *: 0.1.

5 Conclusion

In this paper, we conduct three pre-specified tests to study how participants’ revealed

preferences with respect to the reduction of compound lotteries impact state-of-the-art
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belief elicitation procedures. First, we show that most participants choose compound

lotteries that yield a lower expected payoff compared to their alternatives, providing

a preference-based explanation for why participants often report inaccurate beliefs.

Second, we show that participants who choose the compound lotteries inconsistent

with reduction are also less likely to report accurate beliefs compared to those who

choose the lotteries with the highest expected payoffs. Our third test finds, perhaps

surprisingly, that a procedure that eliminates the need for the reduction assumption

does not increase accuracy. Lastly, our exploratory analysis confirms the role of

reduction in the accuracy gap between reducers and non-reducers in non-centered

probabilities, suggesting the importance of behavioral incentive compatibility of belief

elicitation procedures.

One alternative explanation is that choices inconsistent with reduction are a mis-

take (Nielsen and Rehbeck, 2022) rather than truly representative of underlying non-

standard preferences. Danz et al. (2022) provide some evidence that inaccurate re-

porting is not due to the inability to calculate the reduced lottery. They also find no

correlation between accurate reporting and a cognitive reflection test. While we can-

not entirely rule out that non-preference factors contribute to the inaccurate reporting

we observe, the implications of preference-based and mistake-based explanations are

the same: Current state-of-the-art technology in belief elicitation performs subopti-

mally for people who reveal preferences inconsistent with the reduction of compound

lotteries.

We propose that future research focus on behavioral factors that may play a role

in how participants engage with belief elicitation procedures. One potential approach

is to elicit coarser beliefs, reducing the complexity of the elicitation task (Healy and

Leo, 2022). Another approach would be to improve the user experience of existing

procedures by simplifying the user interface and shortening the instructions. Lastly, it

is an open question whether these issues with inaccurate reporting are specific to the

elicitation of probabilities. The BQSR procedure could be more effective at eliciting

quantiles of a distribution compared to a probability (or a mean more generally) due

to the corresponding linear incentive structure.
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Appendix A: Additional Theory– 50% Belief

In this section, we briefly outline the theory behind our claim that many reasonable

preference models are consistent with truth-telling in the p = 0.5 lottery elicitation

under the BQSR.

In the BQSR, regardless of belief, the participant receives a compound lottery

over outcomes a and b that has two simple sublotteries. These are the lotteries that

occur respectively if the event is true and if it is false. Here, as before, p̃ is the stated

belief.

LT =
(
a ◦ 1− (1− p̃)2 , b ◦ (1− p̃)2

)
LF =

(
a ◦ 1− p̃2, b ◦ 1− (1− p̃)2

)
Since these lotteries are binary over the same outcomes, they can be characterized

by the probability of event a. Thus, for any p̃, LT and LF and thus the compound

lottery above can be written as the ordered pair
(
1− (1− p̃)2 , 1− p̃2

)
. By mapping

the possible compound lotteries in the BQSR to these ordered pairs, we can apply

an elementary two-good choice analogy to the participant’s problem of choosing a

probability in the BQSR.

Letting pt be the probability of outcome a if the event is true and pf be the

probability of outcome a if the event is false, the budget is given explicitly by:

pf = pt + 2
√

1− pt − 1

This is a strictly concave budget symmetric about the 45-degree line and including

endpoints (1, 0) , (0, 1) as well as the point (0.75, 0.75). This is the budget faced by

participants in the BQSR regardless of belief. Preferences over these bundles (pt, pf )

depend on the participants actual belief as well as the details of their preferences

about objective and subjective risk.

For instance, a participant with belief p that the event will occur believes that

lottery Lt occurs with probability p and Lf occurs with probability 1−p. A participant

who treats lotteries involving subjective contingencies just like objective lotteries

where the subjective events are replaced with their relevant subjective probability

and also has preferences consistent with the reduction of compound lotteries is willing
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to trade off between pt and pf at a rate of − p
1−p : the odds-ratio associated with their

belief. Thus, in the case of a belief p = 0.5, the indifference curves for (pt, pf ) are

lines with a slope of −1 since an increase to the probability of event a in Lt can be

offset by the same reduction in Lf . Under the additional assumption of monotonicity,

the optimal choice from the budget set is the bundle (0.75, 0.75). This is, of course,

consistent with “truth-telling” in the BQSR (revealing a belief of 0.5).

This demonstrates the delicate nature of the BQSR. The quadratic payoff function

ensures that the trade-off between pt and pf is equal to the odds-ratio, which is also

the rate participants who reduce compound lotteries are willing to trade off between

these probabilities.

However, when reduction fails, the indifference curves are no longer linear, break-

ing incentive compatibility. But this is true only globally– that is for all beliefs

p ∈ [0, 1]. Locally, the BQSR might be incentive compatible even when reduction

fails. This is particularly true at p = 0.5. Suppose we relax reduction and instead

assume that indifference curves over (pt, pf ) are convex and symmetric. The optimal

choice remains (0.75, 0.75) associated with revealing belief p̃ = 0.5. We will prove

this formally below, but the geometry of the situation is rather intuitive. A convex

indifference curve that is symmetric about the 45-degree line is tangent to the concave

and symmetric budget only at 0.5.

Convexity ensures that the participant prefers less extreme compound lotteries

with respect to the probability of the outcome a in the two sublotteries. Symmetry

of the indifference curves requires that (π1, π2) ∼ (π2, π1). This is a reasonable as-

sumption only in the case of subjective belief p = 0.5. This is because the compound

lotteries associated with stated beliefs p̃ and 1−p̃ are the same, only changing whether

the sublottery with a higher chance of a occurs when the event is true or when it

is false. When the participant believes these events have the same probability, it is

reasonable to assume the participant has no preference over when the more favorable

sublottery occurs– since it occurs with the same probability.

We now prove under the assumptions that preferences over (pt, pf ) are symmetric,

monotone, and convex, the optimal choice is p̃ = 0.5 or the bundle (0.75, 0.75) .

Proof : Consider any other choice of pt ∈ [0, 1] /0.75. Assume for contradiction

that it is optimal. Since the budget set is pf = pt + 2
√

1− pt − 1, this bundle is(
pt, pt + 2

√
1− pt − 1

)
. Since the budget is symmetric about the 45−degree line, the

bundle
(
pt + 2

√
1− pt − 1, pt

)
is also in the budget set. By symmetry of preferences,
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(
pt, pt + 2

√
1− pt − 1

)
∼
(
pt + 2

√
1− pt − 1, pt

)
. By convexity of preferences, the

convex combination of these two bundles
(
pt +
√

1− pt − 1
2
, pt +

√
1− pt − 1

2

)
is pre-

ferred to either endpoint. Since pt +
√

1− pt − 1
2
< 0.75 for any pt ∈ [0, 1] /0.75,

by monotonicity, (0.75, 0.75) �
(
pt +
√

1− pt − 1
2
, pt +

√
1− pt − 1

2

)
. By transitivity,

(0.75, 0.75) �
(
pt, pt + 2

√
1− pt − 1

)
contradicting that the chosen bundle is optimal.
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Appendix B: Additional table

(1) (2) (3)

ROE -0.035 -0.047

(0.024) (0.033)

Non-reducer -0.139∗∗∗ -0.140∗∗∗

(0.042) (0.041)

Non-reducer × ROE 0.024

(0.048)

Stratum FE Yes Yes Yes

Observations 1,206 603 1,206

Adjusted R2 0.001 0.018 0.017

Table B.1: Accuracy for reducers and non-reducers in the BQSR and ROE tasks,
stratum FE specifications

Note: Estimated coefficients are from linear regressions of the accuracy dummy variable on the
indicated regressors and stratum fixed effects. Stratum FE correspond to the block-randomization
of tasks and task ordering faced by participants. Unit of observation is the participation-elicitation
pair. Sample in columns 1 and 3 is all non-centered elicitations. Sample in column 2 is
non-centered BQSR elicitations only. Standard errors clustered at the participant level in columns
1 and 3 in parentheses. Heteroskedasticity-robust standard errors in column 2 in parentheses. ***:
0.01, **: 0.05, *: 0.1.
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Online Appendix: Experiment Screenshots
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