Appendix to accompany: Family Networks and School Choice

Andrew Dustan^{*} Department of Economics Vanderbilt University

March~2018

 $[\]label{eq:constant} \ensuremath{^*\text{E-mail: and rew.dustan@vanderbilt.edu}}.$

A. Model of school choice

This appendix extends a model of school choice from Hastings, Kane, and Staiger (2009) by incorporating incomplete information, risk aversion, and learning from peers. In my model, the utility from attending each school is uncertain because of incomplete information about student-school match quality. Risk-averse students revise their beliefs about utilities by receiving informative signals about match quality from peers. The setup is similar to models of consumer demand for experience goods, in particular Roberts and Urban (1988) and Erdem and Keane (1996), where consumers are uncertain about product quality and revise their beliefs due to word-of-mouth or informative advertising.¹

This model produces testable hypotheses about how students react to new information about specific schools. First, the model predicts that the average impact of new information on same-school expected utility is positive. This is a prediction about the average effect of new information over all students and schools in the population, not a prediction that the average effect will be positive for each school. Second, the model predicts that the impact of new information depends on how positive or negative the signal was. Finally, these effects are predicted to apply, to a lesser degree, to other schools that are observably similar to the school about which the information was received.

General setup

The student's problem is to maximize expected utility by choosing one school to attend from his choice set. Here I abstract from the problem of portfolio construction and focus on the first choice. This is reasonable if one thinks that the first listed option is the student's most-preferred school, a modest assumption given the large number of options that a student is allowed to list in order to diversify and choose safety schools.

Student *i*'s utility from school $j \in J$ is a function of student-school match quality:

$$U_{ij} = U\left(\boldsymbol{X_{ij}\beta_i}\right) = U\left(\left(\bar{\boldsymbol{X}_j} + \widetilde{\boldsymbol{X}_{ij}}\right)\beta_i\right)$$

where match quality is expressed as the sum of student-school attributes in the vector X_{ij} weighted by the student-specific vector of preference parameters β_i . The attribute vector is decomposed into two terms: \bar{X}_j is the average level in the population and \tilde{X}_{ij} is the studentspecific deviation from this level. An example of a student-school attribute is academic fit, which is on average higher at some schools than others, but also has a student-specific component that depends on how well the school caters to the student's particular learning style and ability level.

¹Students may also gain productive knowledge about schools from their peers, which allows them to obtain higher utility from attending the peer's school. I omit this channel from the model since its effect on choice is obvious and the focus is on the role of information for risk-averse decision-makers.

The student knows the relative weights β_i he puts on each attribute. If he also knows X_{ij} , and if he is risk-neutral with respect to match quality, so that $U(X_{ij}\beta_i) = X_{ij}\beta_i$, this model is nearly identical to the one in Hastings, Kane, and Staiger (2009). In that case, the student chooses school j if it provides the highest match quality out of all schools in the choice set: $X_{ij}\beta_i > X_{ik}\beta_i \forall k \neq j \in J$.²

Incomplete information about match quality

Incomplete information about match quality is modeled by making it so that the student imperfectly observes student-school attributes. He does not observe \overline{X}_j or \widetilde{X}_{ij} , but he knows the distributions from which each is drawn:

$$ar{oldsymbol{X}}_{j} \sim \mathcal{N}\left(ar{oldsymbol{X}}_{j}^{0}, \Sigma_{oldsymbol{ar{X}}_{j}}
ight), \hspace{1em} \widetilde{oldsymbol{X}}_{ij} \sim \mathcal{N}\left(\widetilde{oldsymbol{X}}_{ij}^{0}, \Sigma_{oldsymbol{ar{X}}_{ij}}
ight).$$

For simplicity of exposition, the covariance matrices $\Sigma_{\bar{X}_j}$ and $\Sigma_{\tilde{X}_{ij}}$ are assumed to be diagonal, and \bar{X}_j and \tilde{X}_{ij} are assumed to be mean independent. Thus X_{ij} is distributed normally with mean $X_{ij}^0 = \bar{X}_j^0 + \tilde{X}_{ij}^0$ and diagonal covariance matrix with $(\ell, \ell)^{\text{th}}$ entry $1/\tau_{\ell ij}^0$.³

Because X_{ij} is unknown, a risk-neutral student chooses j if it maximizes *expected* match quality: $E_0[X_{ij}\beta_i] > E_0[X_{ik}\beta_i] \quad \forall k \neq j \in J$, where the 0 subscript indicates that the expectation is formed solely on the basis of the match quality distributions. Incomplete information about match quality (in particular, about mean quality \bar{X}_j) is sufficient to predict the results from Hastings and Weinstein (2008), where giving information about school-level average test scores to students increased the weight that students placed on test scores when choosing schools.⁴

Risk aversion

Allowing the student to be risk-averse will address a troubling result from the risk-neutral model. Risk neutrality implies that the relative precision with which match quality is known does not affect choice. That is, presented with a choice between two schools of equal expected match quality but where one's match is known with complete certainty and the other with uncertainty, the student will be indifferent between them. A risk-averse student will prefer the school where match quality is known with certainty.

To model risk aversion, I allow utility to be concave in match quality. Following Roberts

²Hastings, Kane, and Staiger (2009) do not explicitly model uncertainty, but they do say that uncertainty about an attribute would lead to a lower effective weight being placed on it.

³I assume that for any two schools j and k, X_{ij} and X_{ik} are mean independent.

⁴Intuitively, students were choosing on the basis of both signal and noise about test scores, and the information intervention allowed students to choose on the basis of a stronger signal.

and Urban (1988), I use exponential utility:

$$U_{ij} = -exp\left(-\rho \boldsymbol{X_{ij}\beta_i}\right)$$

where ρ , the coefficient of risk aversion, is assumed to be positive. Due to exponential utility and the joint normal distribution of X_{ij} , expected utility from school j in the absence of additional information can be written in terms of the mean and variance (or precision) of the prior distribution of match quality:⁵

$$U_{0ij}^{*} = E_{0} \left[\boldsymbol{X}_{ij} \boldsymbol{\beta}_{i} \right] - \frac{\rho}{2} Var \left(\boldsymbol{X}_{ij} \boldsymbol{\beta}_{i} \right)$$
$$= \boldsymbol{X}_{ij}^{0} \boldsymbol{\beta}_{i} - \frac{\rho}{2} \sum_{\ell} \frac{\beta_{\ell i}^{2}}{\tau_{\ell i j}^{0}}.$$
$$\tag{1}$$

where $\beta_{\ell i}^2/\tau_{\ell i j}^0$ is the variance of the distribution of match quality from attribute ℓ . The student optimizes with respect to both the mean and variance of match quality, so schools are now "penalized" when beliefs about them are noisier. He chooses the school j that provides the highest expected utility of all available schools: $U_{0ij}^* > U_{0ik}^* \ \forall k \neq j \in J$.

Effect of peer information

When student *i*'s peer attends school *j*, the student improves on his prior belief about match quality by receiving informative signals about student-school attributes X_{ij} . This information comes in the form of an unbiased, noisy signal about each attribute:

$$oldsymbol{P_{ij}} = oldsymbol{X_{ij}} + arepsilon_{ij}, ~~ arepsilon_{ij} \sim \mathcal{N}\left(0, \Sigma_{oldsymbol{P_{ij}}}
ight),$$

where $\Sigma_{P_{ij}}$ is diagonal with entries $1/\tau_{\ell ij}^P$. The signals received are about student-school attributes for student *i*, not the peer.⁶ The idea is that social interactions with the peer allow *i* to learn more about the school and infer something about how much he will benefit from different aspects of it.

The student uses this new information to update his expected utility from attending school j. Because the prior and signal are both distributed normally and because the covariance matrix for each is diagonal, the form of the posterior distribution of each student-school attribute is simple:

⁵The full expression for expected utility is $E_0[U_{ij}] = -exp\left\{-\rho\left(X_{ij}^0\beta_i - \frac{\rho}{2}\sum_{\ell}\frac{\beta_{\ell i}^2}{\tau_{\ell ij}^0}\right)\right\}$, but since this is strictly monotonically increasing in the terms in braces, this is equivalent to optimizing with respect to equation 1.

⁶This is in contrast with Roberts and Urban (1988), in which only quality for the peer is observed.

$$X_{\ell i j}^{1} \sim \mathcal{N}\left(\frac{\tau_{\ell i j}^{0} X_{\ell i j}^{0} + \tau_{\ell i j}^{P} P_{\ell i j}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}}, \frac{1}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}}\right)$$

The posterior distribution of each attribute is a precision-weighted average of the prior and signal. The expected utility from j is now

$$U_{1ij}^* = \widehat{\boldsymbol{X}_{ij}}^1 \boldsymbol{\beta}_i - \frac{\rho}{2} \sum_{\ell} \frac{\beta_{\ell i}^2}{\left(\tau_{\ell i j}^0 + \tau_{\ell i j}^P\right)}$$
(2)

where \widehat{X}_{ij}^1 is the mean of the posterior distribution of X_{ij}^1 . To see how the peer signals affected expected utility, compare equations 1 and 2:

$$U_{1ij}^* - U_{0ij}^* = \left(\widehat{\boldsymbol{X}_{ij}}^{\mathbf{1}} - \boldsymbol{X_{ij}}^{\mathbf{0}}\right) \boldsymbol{\beta}_i + \frac{\rho}{2} \sum_{\ell} \frac{\beta_{\ell i}^2 \tau_{\ell i j}^P}{\tau_{\ell i j}^0 \left(\tau_{\ell i j}^0 + \tau_{\ell i j}^P\right)}.$$
(3)

The change in expected utility comes from two sources. The first term is the change in expected match quality. This quantity may be positive or negative depending on the content of the peer signal. Students may learn that the school is a better or worse match for them than they had guessed. The second term is the change in expected utility resulting from the lower variance in the posterior distribution of match quality. This quantity is unambiguously positive. The increased knowledge about match quality works in the school's favor because the risk-averse student is now more certain about how good the match is.

This gives rise to two results, derived at the end of this appendix:

Result 1: The expected effect of peer information on U_{ij}^* , taken over all students *i* and schools *j*, is positive: $E_{ij} \left[U_{1ij}^* - U_{0ij}^* \right] > 0.$

This is the key testable hypothesis of the model that distinguishes it from models without channels through which information strictly increases expected utility. It says that, on average, receiving peer information about a school increases the expected utility from attending there. Intuitively, the signal is sometimes better than the student's prior belief and sometimes it is worse, but the average effect on expected match quality is zero. On the other hand, the reduction in uncertainty about match quality always works in the school's favor. Note that the expected effect may be positive for certain schools and negative for others, because mean quality \bar{X}_j is drawn from a random distribution. This hypothesis is about the expected effect over all schools.

Result 2: All else equal, the change in expected utility from j depends positively on how favorable the peer signal about match quality from j was: $\frac{\partial (U_{1ij}^* - U_{0ij}^*)}{\partial P_{ij}\beta_i} > 0.$

This hypothesis simply says that when the student receives a relatively good (i.e. high) signal about the match quality from a school, he is more likely to choose that school than if he had received a relatively bad (low) signal.

Shared attributes across schools

Students may know that the level of an attribute is shared across schools. In the empirical setting studied here, schools are divided into subsystems that share important attributes such as curriculum and vocational orientation. In this case, learning about one school in the subsystem also yields useful information about all other schools in the same subsystem. In order to model the shared attributes in a simple way, we can maintain all prior assumptions of the model and additionally assume that for school j in subsystem s, match quality is expressed as $\mathbf{X}_{ijs}\boldsymbol{\beta}_i + \mu_{is}$, where $\mu_{is} \equiv \bar{\mu}_s + \tilde{\mu}_{is}$. The average component of subsystem match quality is distributed $\bar{\mu}_s \sim \mathcal{N}(\bar{\mu}_s^0, \sigma_s^2)$, the student-specific component is distributed $\tilde{\mu}_{is} \sim \mathcal{N}(\tilde{\mu}_{is}^0, \eta_{is}^2)$, and $1/\tau_{is}^{\mu} \equiv \sigma_s^2 + \eta_{is}^2$. In addition to the signal \mathbf{P}_{ij} about unshared attributes, the student receives a signal about the shared attribute:

$$q_{is} = \mu_{is} + \xi_{is}, \quad \xi_{is} \sim \mathcal{N}\left(0, 1/\tau_{is}^q\right).$$

When the student receives a signal about school j in subsystem s, he can update his expected utility from a different school k in the same subsystem:

$$U_{1iks}^* - U_{0iks}^* = \left(\hat{\mu}_{is}^1 - \mu_{is}^0\right) + \frac{\rho}{2} \frac{\tau_{is}^q}{\tau_{is}^\mu \left(\tau_{is}^\mu + \tau_{is}^q\right)} \tag{4}$$

where $\hat{\mu}_{is}^1$ is the mean of the posterior distribution of the shared attribute and μ_{is}^0 is the mean of the prior. This assumption of a shared attribute produces two additional results, derived at the end of the appendix:

Result 3: The expected effect of peer information on the expected utility from any other school in the same subsystem is positive: indexing the peer's school by j and fixing another school k_j in j's subsystem s_j , $E_{ij} \left[U^*_{1ik_js_j} - U^*_{0ik_js_j} \right] > 0.$

On average, receiving a signal about a school increases the expected utility from attending other schools in the same subsystem. The intuition is the same as for Hypothesis 1. Surprises about the match quality from j's subsystem are also surprises about the match quality for all other schools in the subsystem. The surprises cancel out when we average across all schools and students. There is always a reduction in uncertainty about match quality from j's subsystem, which increases expected utility from attending schools in the subsystem.

Result 4: Suppose the student receives a peer signal about school j in subsystem s. All else

equal, the change in expected utility from school k in subsystem s depends positively on how favorable the peer signal about subsystem match quality was: $\frac{\partial \left(U_{1iks}^* - U_{0iks}^*\right)}{\partial q_{is}} > 0.$

The more positive a surprise to the match quality for j's subsystem, the larger is the increase in expected utility from other schools in the same subsystem.

Proofs

Result 1: $E_{ij} \left[U_{1ij}^* - U_{0ij}^* \right] > 0.$

Proof: Equation 3 gives the expected change, over all students and schools, in expected utilities when a signal is received. This expectation is:

$$\mathbf{E}_{ij} \left[U_{1ij}^* - U_{0ij}^* \right] = \mathbf{E}_{ij} \left[\left(\widehat{\mathbf{X}_{ij}^1} - \mathbf{X_{ij}^0} \right) \boldsymbol{\beta}_i + \frac{\rho}{2} \sum_{\ell} \frac{\beta_{\ell i}^2 \tau_{\ell i j}^P}{\tau_{\ell i j}^0 \left(\tau_{\ell i j}^0 + \tau_{\ell i j}^P \right)} \right]$$
$$= \mathbf{E}_{ij} \left[\widehat{\mathbf{X}_{ij}^1} \boldsymbol{\beta}_i \right] - \mathbf{E}_{ij} \left[\mathbf{X}_{ij}^0 \boldsymbol{\beta}_i \right] + \frac{\rho}{2} \sum_{\ell} \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^P}{\tau_{\ell i j}^0 \left(\tau_{\ell i j}^0 + \tau_{\ell i j}^P \right)} \right].$$

From the definition of \widehat{X}_{ij}^1 :

$$\begin{split} \mathbf{E}_{ij} \left[\widehat{\boldsymbol{X}_{lj}}^{\mathbf{l}} \boldsymbol{\beta}_{l} \right] &= \mathbf{E}_{ij} \left[\sum_{\ell} \beta_{\ell i} \frac{\tau_{\ell i j}^{0} X_{\ell i j}^{0} + \tau_{\ell i j}^{P} P_{\ell i j}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \right] \\ &= \sum_{\ell} \left\{ \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{0}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] + \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{P}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} P_{\ell i j} \right] \right\} \\ &= \sum_{\ell} \left\{ \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{0}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] + \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{P}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} (X_{\ell i j} + \varepsilon_{\ell i j}) \right] \right\} \\ &= \sum_{\ell} \left\{ \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{0}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] + \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{P}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} (X_{\ell i j}) \right] \right\} \\ &= \sum_{\ell} \left\{ \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{0}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] + \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{P}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] \right\} \\ &= \sum_{\ell} \left\{ \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{0}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] + \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{P}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] \right\} \\ &= \sum_{\ell} \mathbf{E}_{ij} \left[\mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{0}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] + \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{P}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] \right\} \\ &= \sum_{\ell} \mathbf{E}_{ij} \left[\mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{0}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] + \mathbf{E}_{ij} \left[\frac{\tau_{\ell i j}^{P}}{\tau_{\ell i j}^{0} + \tau_{\ell i j}^{P}} \beta_{\ell i} X_{\ell i j}^{0} \right] \right\}$$

Substituting this result back into the original equation, we have:

$$\begin{aligned} \mathbf{E}_{ij} \left[U_{1ij}^* - U_{0ij}^* \right] &= \mathbf{E}_{ij} \left[\widehat{\mathbf{X}_{ij}^1} \boldsymbol{\beta}_i \right] - \mathbf{E}_{ij} \left[\mathbf{X_{ij}^0} \boldsymbol{\beta}_i \right] + \frac{\rho}{2} \sum_{\ell} \mathbf{E}_{ij} \left[\frac{\tau_{\ell ij}^P}{\tau_{\ell ij}^0 \left(\tau_{\ell ij}^0 + \tau_{\ell ij}^P \right)} \right] \\ &= \mathbf{E}_{ij} \left[\mathbf{X_{ij}^0} \boldsymbol{\beta}_i \right] - \mathbf{E}_{ij} \left[\mathbf{X_{ij}^0} \boldsymbol{\beta}_i \right] + \frac{\rho}{2} \sum_{\ell} \mathbf{E}_{ij} \left[\frac{\tau_{\ell ij}^P}{\tau_{\ell ij}^0 \left(\tau_{\ell ij}^0 + \tau_{\ell ij}^P \right)} \right] \\ &= \frac{\rho}{2} \sum_{\ell} \mathbf{E}_{ij} \left[\frac{\tau_{\ell ij}^P}{\tau_{\ell ij}^0 \left(\tau_{\ell ij}^0 + \tau_{\ell ij}^P \right)} \right] > 0 \end{aligned}$$

where the inequality holds because the τ and ρ terms are all positive by definition.

Result 2: All else equal, $\frac{\partial \left(U_{1ij}^* - U_{0ij}^*\right)}{\partial P_{ij}\beta_i} > 0.$

Proof: Treating β_i and X^0_{ij} as fixed:

$$\frac{\partial \left(U_{1ij}^* - U_{0ij}^*\right)}{\partial \boldsymbol{P}_{ij}\beta_i} = \sum_{\ell} \frac{\partial \left(U_{1ij}^* - U_{0ij}^*\right)}{\partial P_{\ell ij}\beta_{\ell i}} = \sum_{\ell} \frac{\partial U_{1ij}^*}{\partial P_{\ell ij}\beta_{\ell i}}$$
$$= \sum_{\ell} \frac{\partial}{\partial P_{\ell ij}\beta_{\ell i}} \left(\beta_{\ell i} \frac{\tau_{\ell ij}^0 X_{\ell ij}^0 + \tau_{\ell ij}^P P_{\ell ij}}{\tau_{\ell ij}^0 + \tau_{\ell ij}^P}\right) = \sum_{\ell} \frac{\tau_{\ell ij}^P}{\tau_{\ell ij}^0 + \tau_{\ell ij}^P} > 0$$

where the inequality holds because the τ terms are positive.

Result 3: indexing the peer's school by j and fixing another school k_j in j's subsystem s_j , $E_{ij} \left[U^*_{1ik_j s_j} - U^*_{0ik_j s_j} \right] > 0.$

Proof: This is almost identical to the proof for Result 1, except that the student is only receiving information about the shared attribute μ_{is} . From equation 4, again excluding the effect of productive knowledge, the expectation of the change in expected utility from any other school in the same subsystem is:

$$E_{ij}\left[U_{1ik_{j}s_{j}}^{*}-U_{0ik_{j}s_{j}}^{*}\right] = E_{ij}\left[\left(\widehat{\mu}_{is}^{1}-\mu_{is}^{0}\right)\right] + E_{ij}\left[\frac{\rho}{2}\frac{\tau_{is}^{q}}{\tau_{is}^{\mu}\left(\tau_{is}^{\mu}+\tau_{is}^{q}\right)}\right].$$

Using the steps from the proof of Hypothesis 1, we have that $E_{ij} [\hat{\mu}_{is}] = E_{ij} [\mu_{is}^0]$. So:

$$E_{ij} \left[\left(\hat{\mu}_{is}^{1} - \mu_{is}^{0} \right) \right] + E_{ij} \left[\frac{\rho}{2} \frac{\tau_{is}^{q}}{\tau_{is}^{\mu} \left(\tau_{is}^{\mu} + \tau_{is}^{q} \right)} \right]$$

= $E_{ij} \left[\left(\mu_{is}^{0} - \mu_{is}^{0} \right) \right] + E_{ij} \left[\frac{\rho}{2} \frac{\tau_{is}^{q}}{\tau_{is}^{\mu} \left(\tau_{is}^{\mu} + \tau_{is}^{q} \right)} \right]$
= $E_{ij} \left[\frac{\rho}{2} \frac{\tau_{is}^{q}}{\tau_{is}^{\mu} \left(\tau_{is}^{\mu} + \tau_{is}^{q} \right)} \right] > 0$

where the inequality holds because the τ and ρ terms are all positive.

Result 4: Suppose that schools j and k are in the same subsystem s. Then all else equal, $\frac{\partial \left(U_{1iks}^* - U_{0iks}^*\right)}{\partial q_{is}} > 0.$

Proof: Treating μ_{is}^0 as fixed:

$$\frac{\partial\left(U_{1iks}^{*}-U_{0iks}^{*}\right)}{\partial q_{is}} = \frac{\partial U_{1iks}^{*}}{\partial q_{is}} = \frac{\partial\widehat{\mu}_{is}^{1}}{\partial q_{is}} = \frac{\partial}{\partial q_{is}}\left(\frac{\tau_{is}^{\mu}\mu_{is}^{0}+\tau_{is}^{q}q_{is}}{\tau_{is}^{\mu}+\tau_{is}^{q}}\right) = \frac{\tau_{is}^{q}}{\tau_{is}^{\mu}+\tau_{is}^{q}} > 0$$

where the inequality holds because the τ terms are positive.

References

- Erdem, Tulin, and Michael P. Keane. 1996. "Decision-Making under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets." *Marketing Science* 15 (1): 1–20.
- Hastings, Justine, and Jeffrey Weinstein. 2008. "Information, School Choice, and Academic Achievement: Evidence from Two Experiments." *Quarterly Journal of Economics* 123 (4): 1373–1414.
- Hastings, Justine S., Thomas J. Kane, and Douglas O. Staiger. 2009. "Heterogeneous Preferences and the Efficacy of Public School Choice." NBER Working Paper No. 12145.
- Roberts, John H., and Glen L. Urban. 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice." *Management Science* 34 (2): 167–185.

B. Additional tables and figures

	(1) Full	(2) Older siblings at margin of subsystem admission
Score \geq cutoff	-0.113 (0.1158)	-0.134 (0.1493)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$387255 \\ 0.162 \\ 62.288 \\ 8.6$	$238096 \\ 0.131 \\ 60.821 \\ 10.7$

Table B.1: Effects of older sibling admission on younger sibling COMIPEMS exam score

Note: Regressions include cutoff school-year fixed effects and piecewise-linear polynomial terms in older sibling's centered exam score. Observations are weighted using the edge kernel. Standard errors accounting for clustering at the older sibling level are in parentheses. Stars for statistical significance are based on t-tests using (G-1) degrees of freedom, where G is the number of points of support of the centered score. * p<0.10, ** p<0.05, *** p<0.01.

Table D.2. Tredictors of choosing chie school as ins	e choice
	(1) Elite first choice
Parental education (years)	0.011***
Male	(0.0004) -0.005^{**} (0.0023)
Proportion of older sibling's MS with elite first choice	0.463^{***}
log(Older sibling's MS cohort size)	0.014***
Distance from closest elite school (km)	$(0.0018) \\ -0.002^{***} \\ (0.0003)$
Observations	129366
Mean of dependent variable	0.755

Table B.2: Predictors of choosing elite school as first choice

Note: Estimates are average marginal effects from a probit regression. Sample consists of students whose older siblings were below the cutoff of an elite school and were assigned to a non-elite school as a result. Specification also includes younger sibling exam year fixed effects. Standard errors accounting for clustering at the older sibling level are in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

Cl-		(1)	(2)	(3)	(4)	(5)	(6)
Sample		Conditional	Exploded	Conditional	Exploded	Conditional	Exploded
Model		logit	logit	logit	logit	logit	logit
School characteristic	Interacted with						
School above cutoff	Constant	1.294^{***}	1.305***	0.786***	0.685***	0.438***	0.314***
	Come > antaff	(0.023)	(0.016)	(0.037)	(0.022)	(0.039)	(0.024)
	$\text{Score} \geq \text{cuton}$	(0.029)	(0.000)	(0.000)	(0.027)	(0.497)	(0.029)
	Centered score	0.006	0.011***	0.001	-0.004	0.002	-0.002
		(0.005)	(0.003)	(0.007)	(0.004)	(0.008)	(0.005)
	Centered score \times Score \geq cutoff	-0.031^{***}	-0.041^{***}	* -0.036*** (0.000)	-0.031^{***}	(0.035^{***})	-0.030^{***}
School below cutoff	Constant	(0.006) 1.845***	(0.004) 1.937***	(0.009) 1.557***	(0.006) 1.386***	(0.010) 1 265***	(0.006) 1.063***
School Sciow Cuton	Constant	(0.028)	(0.016)	(0.049)	(0.026)	(0.051)	(0.027)
	$Score \ge cutoff$	-1.173^{***}	-0.679^{***}	* -0.642***	-0.421^{***}	-0.524***	-0.319^{***}
		(0.043)	(0.021)	(0.071)	(0.036)	(0.072)	(0.037)
	Centered score	0.068^{***}	(0.051^{***})	(0.029^{***})	(0.027^{***})	(0.027^{***})	(0.025^{***})
	Centered score \times Score $>$ cutoff	(0.000) -0.074^{***}	-0.058^{***}	* -0.040***	-0.025^{***}	(0.010) -0.045^{***}	-0.027^{***}
		(0.009)	(0.004)	(0.015)	(0.007)	(0.015)	(0.008)
Other school belonging to	Constant			0.625***	0.674***	0.506***	0.568***
subsystem above cutoff	Come > antaff			(0.027)	(0.021)	(0.026)	(0.020)
	$\text{Score} \geq \text{cuton}$			(0.237)	(0.286)	(0.033)	(0.201)
	Centered score			0.008	0.009**	0.009*	0.010**
				(0.005)	(0.004)	(0.005)	(0.004)
	Centered score \times Score \geq cutoff			-0.000	-0.008	-0.001	-0.009^{*}
Other school belonging to	Constant			(0.007) 0.443***	(0.005) 0.545***	(0.007) 0.363***	(0.005) 0.467***
Other school belonging to subsystem below cutoff	Constant			(0.036)	(0.024)	(0.036)	(0.024)
	$Score \ge cutoff$			-0.203^{***}	-0.189^{***}	-0.177***	-0.170^{***}
				(0.047)	(0.031)	(0.047)	(0.031)
	Centered score			-0.000	-0.003 (0.005)	-0.002 (0.007)	-0.004 (0.005)
	Centered score \times Score $>$ cutoff			(0.001) -0.001	-0.006	(0.001) -0.002	-0.007
	_			(0.009)	(0.006)	(0.009)	(0.006)
Distance from school	Constant					-0.049***	-0.050***
above cutoff (km)	Seoro > eutoff					(0.002)	(0.002)
	$5000 \ge 000000$					(0.003)	(0.002)
	Centered score					0.000	0.000
						(0.000)	(0.000)
	Centered score \times Score \geq cutoff					0.000	(0.000)
Distance from school	Constant					(0.001) -0.040^{***}	-0.045^{***}
below cutoff (km)						(0.002)	(0.002)
	$Score \ge cutoff$					0.015^{***}	0.015^{***}
	Contained access					(0.003)	(0.002)
	Centered score					-0.000	-0.000
	Centered score \times Score \geq cutoff					-0.001	-0.000
						(0.001)	(0.000)
Mean COMIPEMS score	Constant	0.058***	0.044***	0.052***	0.040***	0.051***	0.040***
or students admitted to school Proportion of older sib's MS	Constant	(0.000) 4 338***	(0.000) 3.052***	(0.000) 4 506***	(0.000) 3.3/3***	(0.000) 4 305***	(0.000) 3 130***
cohort choosing as 1st choice		(0.028)	(0.020)	(0.033)	(0.024)	(0.033)	(0.024)
Distance from student's home	Constant	-0.202^{***}	-0.205^{***}	* -0.205***	-0.211^{***}	-0.168***	-0.168^{***}
		(0.001)	(0.000)	(0.001)	(0.001)	(0.001)	(0.001)
Observations		363191	363191	181650	181650	181650	181650

Table B.3:	Conditional	logit	estimates	of	school	choice	model
------------	-------------	-------	-----------	----	--------	--------	-------

Note: Coefficient estimates are from a conditional logit model for students within 10 points of an admission cutoff. Observations are weighted with respect to centered COMIPEMS score, using the edge kernel. Exploded logit estimates are for the student's top three choices. All specifications include school subsystem fixed effects. Standard errors accounting for clustering at the older sibling level are in parentheses. * p<0.05, *** p<0.05, *** p<0.01.

Figure B.1: Map of COMIPEMS zone of Mexico City A. Elite high schools

B. Non-elite academic high schools

Federal District boundary	Density of COMIPEMS takers (students/sq km/year)
COMIPEMS boundary	0-25
 Colegio de Bachilleres 	25-100
Preparatoria Oficial (Estado de Mexico)	100-250
ColBach (Estado de Mexico)	250-1000
	1000+

C. Non-elite technical and vocational high schools

Federal District boundary	Density of COMIPEMS takers (students/sq km/year)
COMIPEMS boundary	0-25
 CONALEP 	25-100
▲ DGETI	100-250
 CBT (Estado de Mexico) 	250-1000
 CECYTEM (Estado de Mexico) 	1000+

C. Sibling matching and related robustness checks

This appendix provides detail on the rate at which older siblings are successfully matched with younger siblings using the matching algorithm described in the paper, as well as how the algorithm's performance may affect the estimated admission effects. The analysis proceeds in three steps. First, among students who are likely to be older siblings due to their observable characteristics, I show correlates of successfully matching with a younger sibling. Second, assuming that locating a match is a function of observable older sibling characteristics, I re-estimate key results of the paper using inverse probability weighting and show that the average admission effects are only minimally altered. Finally, for likely older siblings near an admissions cutoff, I use the RD design to estimate the effect of marginal admission on the probability of finding a matched younger sibling. The evidence points to null or very small admission effects on match rates. Taken together, the evidence suggests that the results in the paper are not driven by the performance of the matching algorithm or its differential success with respect to older siblings' admissions outcomes.

In order to estimate the success rate of the matching algorithm and how it varies with respect to student characteristics, the sample is first restricted to students who completed both the birth order and number of siblings questions on the COMIPEMS demographic questionnaire, and through their responses indicated that they have at least one younger sibling (e.g. birth order is firstborn, number of siblings is one). The sample is further limited to students in 2008 COMIPEMS cohorts or earlier, since later cohorts had two or fewer years within which to locate a match. For the resulting sample of 994,941 likely older siblings, the algorithm's success rate in matching a younger sibling is 39%. Recalling the algorithm's requirements, this is the rate at which students are matched to their younger sibling who is adjacent in birth order, rather than finding any younger sibling.

To explore correlates of matching success, a binary variable for locating a match is regressed on student observables. The results are in Table C.1. Column 1 shows that higherperforming students are more likely to be matched. For example, a one standard deviation increase in COMIPEMS exam score predicts an increase of 5.0 percentage points in match probability, while a one standard deviation increase in middle school GPA predicts a 3.9 percentage point increase. These findings are consistent with low-performing students being more difficult to match, which is expected given that matching requires either a shared phone number or combination of postal code and middle school. Low-performing students are likely to come from households that change addresses and phone numbers more frequently, with associated changes in middle school attended. Column 2 confirms that importance of family background, finding that higher parental education predicts a higher matching rate. In addition, males and firstborns have higher match probabilities, conditional on other covariates.

	(1)	(2)
	Matched	Matched
	younger sibling	younger sibling
COMIPEMS examination score	0.003***	0.002***
	(0.0000)	(0.0000)
Middle school GPA	0.047***	0.054^{***}
	(0.0007)	(0.0007)
Male	, , , , , , , , , , , , , , , , , , ,	0.021***
		(0.0010)
Parental education		0.009***
		(0.0001)
Firstborn		0.073***
		(0.0010)
Observations	994941	967222
Adjusted R^2	0.032	0.043
Mean of DV	0.386	0.388

Table C.1: Correlates of finding a matched younger sibling among likely older siblings

Note: Sample consists of students from 1998-2008 who report birth order and number of siblings such that they appear to have a younger sibling. Robust standard errors in parentheses. * p<0.10, ** p<0.05, *** p<0.01.

Because the matching algorithm disproportionately locates younger siblings from more advantaged backgrounds, it is important to evaluate whether the resulting sample composition significantly affects the estimated effects of marginal admission found in the paper. To do this, I first use the regression results from column 2 of Table C.1 to estimate inverse probability weights for each likely older sibling. Then, in Table C.2, RD admission effects on several key outcomes from the paper are compared between unweighted (Panel A) and weighted (Panel B) specifications. Multiple findings emerge. First, the unweighted estimates are very similar to those found in the paper, even when restricting the sample to likely older siblings, which reduces the sample compared to the analysis in the paper (due to the paper allowing for matches where one or more siblings did not report birth order or number of siblings). Second, inverse probability weighting attenuates the estimated admission effects, but the magnitude of these changes is small. In no case does the magnitude of the coefficient fall by 10% or more as a proportion of the unweighted coefficient. Thus, to the extent that observables are a good proxy for the factors causing differential match rates, the results suggest that the average effects in the main paper are minimally affected by sample composition.

Danal A Manuel ability and distribution	(1)	10)	(6)	(1)	(E)	(6)	1	(0)	(0)	(10)
ranet A. INO propagating weighting	(1)	(7)	(o)	2 (4)	(0) 1	(0) 	(\mathbf{r})	(o)		
	Cutoff	Cutoff L	School	School S	chools chosen	Schools chosen	A contact 40	Assigned to	Assigned to	Assigned to
	school is	school is ^D	ie fret	Delow cutoll 1	n subsystem of cutoff	in subsystem of school	Assigned to	school below	scnool III subsystom of	scnool m subsystem
	first choice a	uny choice	choice	choice	school	below cutoff		cutoff	cutoff school h	elow cutoff
Score \geq cutoff	0.072^{***}	0.103^{***}	-0.052^{***}	-0.127^{***}	0.205^{***}	-0.156^{***}	0.046^{***}	-0.050^{***}	0.045^{***}	-0.047^{***}
	(0.0026)	(0.0032)	(0.0021)	(0.0042)	(0.0153)	(0.0140)	(0.0015)	(0.0022)	(0.0032)	(0.0037)
Observations	344249	344249	273077	237743	295114	295114	645404	344487	281098	236811
Adjusted R^2	0.159	0.145	0.033	0.113	0.207	0.058	0.027	0.016	0.034	0.018
Mean of DV 1 pt below cutoff	0.146	0.619	0.077	0.633	1.900	1.436	0.072	0.119	0.181	0.229
Bandwidth	9.8	9.7	7.2	6.9	17.1	17.0	19.7	9.5	16.4	13.1
Panel B. Inverse probability weighti	ing (1)	(2)	(3)	(4)	(5)	(9)	(2)	(8)	(6)	(10)
	Tutoff.	Cutoff	School	School	Schools chose	en Schools chos	en	Assimod	Assigned to	Assigned to
	school is	school is	below cuto.	ff below cutofi	f in subsyster	a in subsyste	m Assigned t	o school held	w school in	school in
	first choic	e any choice	e is first	is any choice	of cutoff school	of school helow cuto	cutoff scho ff	ol cutoff	" subsystem c entoff schoo	f subsystem
ع - ح										
Score \geq cutoff	0.00/**	0.102	-0.047	-0.123		-0.147	*** 0.U43**	-0.048	0.042***	-0.044***
	(0.0025)	(0.0034)	(0.0020)	(0.0044)	(0.0150)	(0.0140)	(0.0015)	(0.0022)	(0.0032)	(0.0037)
Observations	344249	344249	273077	237743	295114	295114	645404	344487	281098	236811
Adjusted R^2	0.154	0.147	0.034	0.115	0.210	0.060	0.028	0.018	0.036	0.021
Mean of DV 1 pt below cutoff	0.146	0.619	0.077	0.633	1.900	1.436	0.072	0.119	0.181	0.229
$\operatorname{Bandwidth}$	9.8	9.7	7.2	6.9	17.1	17.0	19.7	9.5	16.4	13.1
Note: Sample limited to older siblings	s who report bi	rth order and	1 number of si	blings such that	they appear to	have a younger	sibling. Local li	near regression	is include cutoff	school

þ	IS.	
fixe	G	
ear	lere	
ol-y	W	
hoc	Ш,	
fsc	sede	
utof	f fr	
5	sol	
nde	ree	
incl	deg	
ns		
ssio	Ģ	
gre	ng	
re.	usi	
ıeaı	sts	
l lin	t-te	
oca	on	
Ţ.	sed	
ing	bas	
sibl	are	
er	ce 8	
gun	can	
yo	nifi	
re a	sig	
hav	cal	
to	isti	
ear	stat	
dd	or s	
ey a	cs fo	
$_{\mathrm{the}}$	Stai	
hat	ŝ.	
ĥt	lese	_:
suc	entl	D.01
18S	are	Ň
blin	in I	*
of si	ure	*.
er c	fel 8	0.0
mp	lev	Ž
nu	ing	* *
pur	sibl	10,
er	ler	00
ord	old	, Ď
th	$_{\rm the}$	ė
bi	at	COI
ort	ing	sq
rep	ster	tere
vho	clus	cen
SS	for	the
ling	ng 1	of t
sib	uti	ort
der	cou	ppc
lo c	3 ac	f su
d tí	TOLS	S 0.
uite.	en	oint
lim	ard	f pc
ple	and	T 0.
am	St_{2}^{i}	nbe
ŝ	Зts.	nur
lote	ffec	Je

A further concern is that, for students in the RD sample, admission to the cutoff school may affect the probability of matching a younger sibling. For example, if admission to the cutoff school on average causes students to attend schools that are more or less commuteaccessible, it might also change the probability that the family moves and changes its phone number. This could lead to a sharp change in sample composition across the admission cutoff, which may bias the estimated admission effects. The paper provides evidence that is is unlikely: the density of observations is nearly constant across the cutoff and covariates are balanced around the cutoff. The matching rate among likely older siblings near an admissions cutoff provides further evidence that marginal admission is not an important determinant of matching success. Table C.3 presents RD results using the local linear specification from the paper. Column 1 shows no evidence that marginal admission affects the match rate, with a point estimate of 0.3 percentage points compared to the mean match rate of 40% among students one point below the cutoff. Columns 2 through 6 demonstrate that there is only weak evidence for heterogeneous effects of admission with respect to student characteristics. The strongest evidence for heterogeneity is with respect to middle school grade point average, where above-average students experience a 0.8 percentage point higher admission effect on match rate than below-average students. These small point estimates, combined with the density and covariate balance demonstrated in the paper, suggest that differential match rates due to admission are unlikely to be driving the observed older sibling effects on younger sibling school choice.

	(1)	(2)	(3)	(4)	(5)	(6)
Interaction variable	No interaction	Parent has high school education or above	$\begin{array}{l} {\rm Middle\ school}\\ {\rm GPA} > {\rm median} \end{array}$	Male	Firstborn	Cutoff score above sample median
$Score \ge cutoff$	0.003	0.003	-0.001	0.004^{*}	0.004^{*}	0.005^{*}
	(0.0017)	(0.0026)	(0.0024)	(0.0023)	(0.0025)	(0.0023)
$(\text{Score} \ge \text{cutoff}) \times (\text{Interaction})$		0.002	0.008^{**}	-0.004	-0.003	-0.007*
		(0.0038)	(0.0035)	(0.0036)	(0.0035)	(0.0038)
Observations	1590284	1334789	1590284	1590284	1590284	1590284
Adjusted R^2	0.028	0.031	0.031	0.028	0.036	0.028
Mean of DV 1 pt below cutoff	0.398	0.399	0.398	0.398	0.398	0.398
Bandwidth	18.1	16.0	18.1	18.1	18.1	18.1

Table C.3: Effect of cutoff school admission on probability of finding a matching younger sibling among likely older siblings

Note: Sample consists of students from 1998-2008 who report birth order and number of siblings such that they appear to have a younger sibling. Regressions include cutoff school-year fixed effects and polynomials in student's centered exam score. Observations are weighted using the edge kernel. Standard errors accounting for clustering at the older sibling level are in parentheses. Stars for statistical significance are based on t-tests using (G-1) degrees of freedom, where G is the number of points of support of the centered score. * p<0.10, ** p<0.05, *** p<0.01.

D. Parametric RD estimates

The following tables replicate the analysis in the paper with parametric RD estimators. All use the uniform kernel and a fixed bandwidth of either 5 (Panel A) or 10 (Panels B and C). Panels A and B include piecewise-linear terms in the running variable, while Panel C uses a piecewise-quadratic fit. The analysis is otherwise identical to the table with the corresponding number in the paper. Table D.1 is intentionally omitted to obtain this numbering correspondence.

Panel A. Linear, BW=5	(1)	(2)	(3)	(4)
	Cutoff school is first choice	Cutoff school is any choice	School below cutoff is first choice	School below cutoff is any choice
$Score \ge cutoff$	$\begin{array}{c} 0.073^{***} \\ (0.0030) \end{array}$	$\begin{array}{c} 0.106^{***} \\ (0.0038) \end{array}$	-0.051^{***} (0.0020)	-0.124^{***} (0.0040)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$235207 \\ 0.153 \\ 0.142 \\ 5.0$	$235207 \\ 0.143 \\ 0.606 \\ 5.0$	$233774 \\ 0.027 \\ 0.078 \\ 5.0$	$233774 \\ 0.109 \\ 0.618 \\ 5.0$
Panel B. Linear, BW=10	(1) Cutoff school is first choice	(2) Cutoff school is any choice	(3) School below cutoff is first choice	(4) School below cutoff is any choice
$Score \ge cutoff$	$\begin{array}{c} 0.072^{***} \\ (0.0021) \end{array}$	0.105^{***} (0.0026)	-0.049^{***} (0.0013)	-0.118^{***} (0.0028)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$\begin{array}{c} 459187 \\ 0.150 \\ 0.142 \\ 10.0 \end{array}$	$\begin{array}{c} 459187 \\ 0.135 \\ 0.606 \\ 10.0 \end{array}$	$\begin{array}{c} 456391 \\ 0.027 \\ 0.077 \\ 10.0 \end{array}$	$\begin{array}{r} 456391 \\ 0.104 \\ 0.618 \\ 10.0 \end{array}$
Panel C. Quadratic, BW=10	(1) Cutoff school is first choice	(2) Cutoff school is any choice	(3) School below cutoff is first choice	(4) School below cutoff is any choice
$Score \ge cutoff$	$\begin{array}{c} 0.073^{***} \\ (0.0032) \end{array}$	$\begin{array}{c} 0.105^{***} \\ (0.0041) \end{array}$	-0.054^{***} (0.0022)	-0.128^{***} (0.0044)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$\begin{array}{c} 459187 \\ 0.150 \\ 0.142 \\ 10.0 \end{array}$	$\begin{array}{c} 459187 \\ 0.135 \\ 0.606 \\ 10.0 \end{array}$	$\begin{array}{c} 456391 \\ 0.027 \\ 0.077 \\ 10.0 \end{array}$	$\begin{array}{c} 456391 \\ 0.104 \\ 0.618 \\ 10.0 \end{array}$

Table D.2: Effect of older sibling admission on younger sibling choice

Table D.3: Effect of older sibli	ng admission or	n younger siblin	g's preference fo	or same school,	heterogeneity b	y grade year di	ference of siblir	ıgs
Panel A. Linear, BW=5	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Cutoff school	Cutoff school	Cutoff school	Cutoff school	School below	School below	School below	School below
	is first choice	is first choice	is any choice	is any choice	cutoff is first	cutoff is first	cutoff is any	cutoff is any
	is more choice	is inst choice	is any choice	is any choice	choice	choice	choice	choice
$Score \ge cutoff$	0.080***	(One per	0.107***	(One per	-0.060^{***}	(One per	-0.122^{***}	(One per
	(0.0043)	cutoff)	(0.0053)	cutoff)	(0.0029)	cutoff)	(0.0056)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Sibs } 3+ \text{ years apart})$	-0.014^{**}	-0.016^{**}	-0.005	-0.006	0.017^{***}	0.018^{***}	-0.006	-0.007
	(0.0060)	(0.0060)	(0.0076)	(0.0076)	(0.0040)	(0.0040)	(0.0081)	(0.0081)
Observations	235207	235172	235207	235172	233774	233738	233774	233738
Adjusted R^2	0.150	0.153	0.149	0.151	0.026	0.029	0.112	0.112
Mean of DV 1 pt below cutoff	0.142	0.142	0.606	0.606	0.078	0.078	0.618	0.618
Bandwidth	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Panel B. Linear, BW=10	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Cutoff school	Cutoff school	Cutoff school	Cutoff school	School below	School below	School below	School below
	is first shoise	is first shoise	ia apy shoise	ia apri choice	cutoff is first	cutoff is first	cutoff is any	cutoff is any
	is first choice	is first choice	is any choice	is any choice	choice	choice	choice	choice
$Score \ge cutoff$	0.077***	(One per	0.106***	(One per	-0.054^{***}	(One per	-0.115^{***}	(One per
	(0.0029)	cutoff)	(0.0036)	cutoff)	(0.0019)	cutoff)	(0.0039)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Sibs } 3+ \text{ years apart})$	-0.011^{**}	-0.012^{***}	-0.002	-0.004	0.011^{***}	0.011^{***}	-0.007	-0.007
	(0.0041)	(0.0042)	(0.0052)	(0.0052)	(0.0026)	(0.0027)	(0.0056)	(0.0056)
Observations	459187	459173	459187	459173	456391	456375	456391	456375
Adjusted R^2	0.150	0.153	0.139	0.141	0.026	0.029	0.106	0.107
Mean of DV 1 pt below cutoff	0.142	0.142	0.606	0.606	0.077	0.077	0.618	0.618
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Panel C. Quadratic, BW=10	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Cutoff school	Cutoff school	Cutoff school	Cutoff school	School below	School below	School below	School below
	is first choice	is first choice	is any choice	is any choice	cuton is nirst choice	cuton is first choice	cuton is any choice	cuton is any choice
$Score \ge cutoff$	0.078***	(One per	0.106***	(One per	-0.060***	(One per	-0.124***	(One per
—	(0.0038)	cutoff)	(0.0048)	cutoff)	(0.0026)	cutoff)	(0.0051)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Sibs } 3+ \text{ years apart})$	-0.011**	-0.012^{***}	-0.002	-0.004	0.011***	0.011^{***}	-0.007	-0.007
	(0.0041)	(0.0042)	(0.0052)	(0.0052)	(0.0026)	(0.0027)	(0.0056)	(0.0056)
Observations	459187	459173	459187	459173	456391	456375	456391	456375
Adjusted R^2	0.150	0.153	0.139	0.141	0.026	0.029	0.106	0.107
Mean of DV 1 pt below cutoff	0.142	0.142	0.606	0.606	0.077	0.077	0.618	0.618
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0

Panel A. Linear, BW=5	(1)	(2)	(3)	(4)	(5)	(6)
,	Schools chosen	Schools chosen	Schools chosen	Schools chosen	Schools chosen	Schools chosen
	in subsystem	in subsystem	in subsystem	in subsystem	in subsystem	in subsystem
	of cutoff	of cutoff	of cutoff	of school	of school	of school
	school	school	school	below cutoff	below cutoff	below cutoff
$Score \ge cutoff$	0.188***	0.164^{***}	(One per	-0.155^{***}	-0.180^{***}	(One per
	(0.0233)	(0.0322)	cutoff)	(0.0216)	(0.0311)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Sibs } 3+ \text{ years apart})$		0.053	0.055		0.041	0.045
		(0.0473)	(0.0476)		(0.0439)	(0.0443)
Observations	118399	118399	118331	118399	118399	118331
Adjusted R^2	0.199	0.201	0.201	0.051	0.049	0.049
Mean of DV 1 pt below cutoff	1.868	1.868	1.868	1.420	1.420	1.419
Bandwidth	5.0	5.0	5.0	5.0	5.0	5.0
Panel B. Linear, BW=10	(1)	(2)	(3)	(4)	(5)	(6)
,	Schools chosen	Schools chosen	Schools chosen	Schools chosen	Schools chosen	Schools chosen
	in subsystem	in subsystem	in subsystem	in subsystem	in subsystem	in subsystem
	of cutoff	of cutoff	of cutoff	of school	of school	of school
	school	school	school	below cutoff	below cutoff	below cutoff
$Score \ge cutoff$	0.203***	0.191***	(One per	-0.154^{***}	-0.151^{***}	(One per
	(0.0159)	(0.0217)	cutoff)	(0.0146)	(0.0208)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Sibs } 3+ \text{ years apart})$		0.023	0.024		-0.018	-0.017
		(0.0319)	(0.0320)		(0.0294)	(0.0295)
Observations	231571	231571	231538	231571	231571	231538
Adjusted R^2	0.199	0.202	0.204	0.051	0.052	0.052
Mean of DV 1 pt below cutoff	1.867	1.867	1.867	1.420	1.420	1.420
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0
Panel C. Quadratic, BW=10	(1)	(2)	(3)	(4)	(5)	(6)
,	Schools chosen	Schools chosen	Schools chosen	Schools chosen	Schools chosen	Schools chosen
	in subsystem	in subsystem	in subsystem	in subsystem	in subsystem	in subsystem
	of cutoff	of cutoff	of cutoff	of school	of school	of school
	school	school	school	below cutoff	below cutoff	below cutoff
$Score \ge cutoff$	0.192***	0.178***	(One per	-0.156^{***}	-0.153^{***}	(One per
	(0.0251)	(0.0292)	cutoff)	(0.0233)	(0.0277)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Sibs } 3+ \text{ years apart})$		0.023	0.024		-0.018	-0.017
		(0.0319)	(0.0320)		(0.0294)	(0.0295)
Observations	231571	231571	231538	231571	231571	231538
Adjusted R^2	0.199	0.202	0.204	0.051	0.052	0.052
Mean of DV 1 pt below cutoff	1.867	1.867	1.867	1.420	1.420	1.420
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0

Table D.4: Effect of older sibling admission on number of other schools chosen in cutoff subsystem

Table D.5: Effect of older sit	oling admissio	on on younger	r sibling's choic	es, heterogeneity l	by differences in	n schools above	and below cuto	ff
Panel A. Linear, BW=5	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Sample	Cutoff schoo	ol and school	below cutoff in	same subsystem	Cutoff school	elite; school be	low cutoff in dif	ferent subsystem
				-	First choice	First choice	Schools	Schoole
	Cutoff	Cutoff	Cutoff	Cutoff	helongs to	helongs to	chosen in	chosen in
Dependent variable	school is	school is	school is	school is	cutoff school	cutoff school	cutoff school	cutoff school
	first choice	first choice	any choice	any choice	subsystem	subsystem	subsystem	subsystem
					subsystem	subsystem	subsystem	subsystem
$Score \ge cutoff$	0.075***	(One per	0.077***	(One per	0.159***	(One per	0.473***	(One per
	(0.0062)	cutoff)	(0.0076)	cutoff)	(0.0171)	cutoff)	(0.0801)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Dif. in cutoff scores of})$	0.002	0.001	-0.004	0.014				
schools above and below cutoff \geq median)	(0.0089)	(0.0095)	(0.0107)	(0.0116)				
$(\text{Score} \ge \text{cutoff}) \times (\text{School below cutoff})$					-0.054^{**}	-0.046^{**}	-0.191^{*}	-0.201*
belongs to non-elite subsystem)					(0.0190)	(0.0193)	(0.0898)	(0.0914)
Observations	116252	116183	116252	116183	59748	59748	59748	59748
Adjusted R^2	0.187	0.190	0.171	0.173	0.165	0.167	0.120	0.121
Mean of DV 1 pt below cutoff	0.163	0.163	0.644	0.644	0.563	0.563	2.284	2.284
Bandwidth	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Panel B. Linear, BW=10	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Sample	Cutoff schoo	ol and school	below cutoff in	same subsystem	Cutoff school	elite; school be	low cutoff in dif	ferent subsystem
	Cutoff	Cutoff	Cutoff	Cutoff	First choice	First choice	Schools	Schools
Dependent variable	cuton achael is	cuton achael is	cuton school is	cuton achaol ia	belongs to	belongs to	chosen in	chosen in
Dependent variable	frat choice	frat choice	school is	school is	cutoff school	cutoff school	cutoff school	cutoff school
	mst choice	mst choice	any choice	any choice	subsystem	subsystem	subsystem	subsystem
Score > cutoff	0.076***	(One per	0.076***	(One per	0.154***	(One per	0.443***	(One per
	(0.0042)	cutoff)	(0.0053)	cutoff)	(0.0117)	cutoff)	(0.0554)	cutoff)
$(\text{Score} > \text{cutoff}) \times (\text{Dif. in cutoff scores of})$	0.002	-0.006	-0.006	0.011	(010221))	(01000-1)	
schools above and below cutoff \geq median)	(0.0060)	(0.0064)	(0.0074)	(0.0080)				
$(\text{Score} > \text{cutoff}) \times (\text{School below cutoff})$	(0.0000)	(0.000-)	(0.001-)	(0.0000)	-0.050^{***}	-0.041^{***}	-0.145^{**}	-0.163^{**}
belongs to non-elite subsystem)					(0.0130)	(0.0132)	(0.0621)	(0.0634)
Observentions	007450	007406	007450	227406	117996	117996	117996	117996
Advented D2	227450	227400	22/400	227400	0.166	0.167	0.110	0.120
Adjusted R ⁻	0.191	0.195	0.102	0.105	0.100	0.107	0.119	0.120
Readwidth	10.0	10.0	10.0	10.0	0.505	10.0	2.264	2.204
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Panel C. Quadratic, BW=10	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Sample	Cutoff schoo	ol and school	below cutoff in	same subsystem	Cutoff school	elite; school be	low cutoff in dif	ferent subsystem
*				v	First shoise	First aboico	Sebools	Schools
	Cutoff	Cutoff	Cutoff	Cutoff	belongs to	belongs to	chosen in	schoon in
Dependent variable	school is	school is	school is	school is	outoff school	outoff school	chosen in	chosen in
	first choice	first choice	any choice	any choice	cuton school	cuton school	cuton school	cuton school
					subsystem	subsystem	subsystem	subsystem
$Score \ge cutoff$	0.075^{***}	(One per	0.075^{***}	(One per	0.154^{***}	(One per	0.439^{***}	(One per
	(0.0056)	cutoff)	(0.0068)	cutoff)	(0.0133)	cutoff)	(0.0628)	cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{Dif. in cutoff scores of})$	0.002	-0.006	-0.006	0.011				
schools above and below cutoff \geq median)	(0.0061)	(0.0064)	(0.0074)	(0.0080)				
$(\text{Score} \ge \text{cutoff}) \times (\text{School below cutoff})$					-0.050^{***}	-0.041^{***}	-0.145^{**}	-0.163^{**}
belongs to non-elite subsystem)					(0.0130)	(0.0133)	(0.0621)	(0.0634)
Observations	227450	227406	227450	227406	117326	117326	117326	117326
Adjusted R^2	0.191	0.195	0.162	0.163	0.166	0.167	0.119	0.120
Mean of DV 1 pt below cutoff	0.163	0.163	0.643	0.643	0.563	0.563	2.284	2.284
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0

Table D.5: Effect of older sibling admission on younger sibling's choices, heterogeneity by differences in schools above and below cutoff

Table D.6: Separating effects	s by sibling pai	r characteristics, h	eterogeneity by	sibling pair characteri	stics and differe	ences in schools ab	ove and below cu	ıtoff
Panel A. Linear, BW=5 Sample	(1)	(2) Same-sez	(3) c sibling pair	(4)	(5)	(6) Opposite-s	(7) ex sibling pair	(8)
Subsample	Cutoff sch below cutoff i	ool and school n same subsystem	Cutoff scl below cutoff in	hool elite; school n different subsystem	Cutoff sche below cutoff in	ool and school 1 same subsystem	Cutoff sche below cutoff in	ool elite; school different subsystem
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is any choice	Cutoff school is any choice	First choice belongs to cutoff school subsystem	First choice belongs to cutoff school subsystem	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
Score \geq cutoff (Score \geq cutoff) × (Dif. in cutoff scores of schools above and below cutoff \geq median) (Score \geq cutoff) × (School below cutoff	(One per cutoff) 0.001 (0.0141)	(One per cutoff) -0.005 (0.0164)	(One per cutoff) -0.052*	(One per cutoff)	(One per cutoff) -0.002 (0.0141)	(One per cutoff) 0.027 (0.0173)	(One per cutoff)	(One per cutoff)
belongs to non-elite subsystem)			(0.0274)	(0.1277)			(0.0276)	(0.1333)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	59154 0.184 0.173 5.0	59154 0.173 0.665 5.0	30530 0.171 0.571 5.0	30530 0.125 2.291 5.0	56020 0.173 0.154 5.0	56020 0.189 0.622 5.0	29215 0.168 0.554 5.0	29215 0.120 2.275 5.0
Sample	(9) Absolute	(10) lifference in sibling	(11) s' middle schoo	(12) ol GPA < median	(13) Absolute o	(14) lifference in sibling	(15) s' middle school	(16) GPA > median
Subsample	Cutoff sch below cutoff i	ool and school n same subsystem	Cutoff scl below cutoff in	hool elite; school n different subsystem	Cutoff sche below cutoff in	ool and school 1 same subsystem	Cutoff sche below cutoff in	ool elite; school different subsystem
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is any choice	Cutoff school is any choice	First choice belongs to cutoff school subsystem	First choice belongs to cutoff school subsystem	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
$\begin{aligned} &\text{Score} \geq \text{cutoff} \\ &(\text{Score} \geq \text{cutoff}) \times (\text{Dif. in cutoff scores of} \end{aligned}$	(One per cutoff) 0.019	(One per cutoff) 0.026	(One per cutoff)	(One per cutoff)	(One per cutoff) -0.007	(One per cutoff) -0.003	(One per cutoff)	(One per cutoff)
schools above and below cutoff \geq median) (Score \geq cutoff) \times (School below cutoff belongs to non-elite subsystem)	(0.0155)	(0.0184)	-0.048 (0.0293)	-0.507^{***} (0.1415)	(0.0145)	(0.0169)	-0.032 (0.0279)	$\begin{array}{c} 0.022\\ (0.1336) \end{array}$
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	49168 0.173 0.171 5.0	49168 0.175 0.647 5.0	25885 0.164 0.554 5.0	25885 0.115 2.330 5.0	54342 0.201 0.165 5.0	54342 0.199 0.658 5.0	28105 0.181 0.588 5.0	28105 0.134 2.356 5.0
Panel B. Linear, BW=10 Sample	(1)	(1) (2) (3) (4) Same-sex sibling pair			(5)	(6) Opposite-s	(7) ex sibling pair	(8)
Subsample	Cutoff sch below cutoff i	ool and school n same subsystem	Cutoff school elite; school below cutoff in different subsystem		Cutoff sche below cutoff in	ool and school 1 same subsystem	Cutoff scho below cutoff in	ool elite; school different subsystem
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is any choice	Cutoff school is any choice	First choice belongs to cutoff school subsystem	First choice belongs to cutoff school subsystem	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
$Score \ge cutoff$ $(Score \ge cutoff) \times (Dif. in cutoff scores of$	(One per cutoff) -0.003	(One per cutoff) 0.011	(One per cutoff)	(One per cutoff)	(One per cutoff) -0.008	(One per cutoff) 0.008	(One per cutoff)	(One per cutoff)
schools above and below cutoff \geq median) (Score \geq cutoff) \times (School below cutoff belongs to non-elite subsystem)	(0.0095)	(0.0112)	-0.057^{***} (0.0187)	-0.118 (0.0875)	(0.0093)	(0.0118)	-0.021 (0.0189)	-0.214^{**} (0.0916)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	116309 0.190 0.172 10.0	116309 0.158 0.664 10.0	60118 0.170 0.571 10.0	60118 0.124 2.291 10.0	110383 0.184 0.153 10.0	110383 0.178 0.620 10.0	57204 0.166 0.554 10.0	57204 0.119 2.275 10.0
Sample	(9) Absolute o	(10) lifference in sibling	(11) s' middle schoo	(12) ol GPA < median	(13) Absolute d	(14) lifference in sibling	(15) s' middle school	(16) GPA \geq median
Subsample	Cutoff sch below cutoff is	ool and school n same subsystem	Cutoff scl below cutoff in	hool elite; school n different subsystem	Cutoff sche below cutoff in	ool and school a same subsystem	Cutoff scho below cutoff in	ool elite; school different subsystem
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is any choice	Cutoff school is any choice	First choice belongs to cutoff school subsystem	First choice belongs to cutoff school subsystem	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
$Score \ge cutoff$ $(Score \ge cutoff) \times (Dif. in cutoff scores of$	(One per cutoff) 0.003	(One per cutoff) 0.006	(One per cutoff)	(One per cutoff)	(One per cutoff) -0.001	(One per cutoff) 0.007	(One per cutoff)	(One per cutoff)
scnoois above and below cutoff \geq median) (Score \geq cutoff) \times (School below cutoff belongs to non-elite subsystem)	(0.0103)	(0.0125)	-0.049^{**} (0.0201)	-0.256^{**} (0.0976)	(0.0096)	(0.0115)	-0.023 (0.0191)	-0.142 (0.0921)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	96573 0.181 0.170 10.0	96573 0.165 0.645 10.0	50648 0.167 0.554 10.0	50648 0.114 2.330 10.0	107072 0.208 0.164 10.0	107072 0.183 0.656 10.0	55129 0.179 0.588 10.0	55129 0.132 2.356 10.0

			Table D.6 (continued)				
Panel C. Quadratic, BW=10 Sample	(1)	(2) Same-sez	(3) x sibling pair	(4)	(5)	(6) Opposite-s	(7) ex sibling pair	(8)
Subsample	Cutoff sch below cutoff i	n same subsystem	Cutoff sci below cutoff is	hool elite; school n different subsystem	Cutoff scho below cutoff in	ool and school a same subsystem	Cutoff school elite; school below cutoff in different subsystem	
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is any choice	Cutoff school is any choice	First choice belongs to cutoff school subsystem	First choice belongs to cutoff school subsystem	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
$\begin{aligned} & \text{Score} \geq \text{cutoff} \\ & (\text{Score} \geq \text{cutoff}) \times (\text{Dif. in cutoff scores of schools above and below cutoff} \geq \text{median}) \end{aligned}$	(One per cutoff) -0.003 (0.0095)	(One per cutoff) 0.011 (0.0112)	(One per cutoff)	(One per cutoff)	(One per cutoff) -0.008 (0.0093)	(One per cutoff) 0.008 (0.0118)	(One per cutoff)	(One per cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{School below cutoff})$ belongs to non-elite subsystem)			-0.057^{***} (0.0187)	-0.118 (0.0875)			-0.021 (0.0189)	-0.215^{**} (0.0916)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	116309 0.189 0.172 10.0	$116309 \\ 0.158 \\ 0.664 \\ 10.0$	60118 0.170 0.571 10.0	60118 0.124 2.291 10.0	110383 0.184 0.153 10.0	110383 0.178 0.620 10.0	57204 0.166 0.554 10.0	57204 0.119 2.275 10.0
Sample	(9) Absolute	(10) difference in sibling	(11) gs' middle schoo	(12) ol GPA < median	(13) Absolute d	(14) ifference in sibling	(15) s' middle school	(16) GPA \geq median
Subsample	Cutoff sch below cutoff i	ool and school n same subsystem	Cutoff school elite; school below cutoff in different subsystem		Cutoff school and school below cutoff in same subsystem		Cutoff school elite; school below cutoff in different subsystem	
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is any choice	Cutoff school is any choice	First choice belongs to cutoff school subsystem	First choice belongs to cutoff school subsystem	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
Score \geq cutoff (Score \geq cutoff) × (Dif. in cutoff scores of schoole above and below autoff \geq modium)	(One per cutoff) 0.003 (0.0102)	(One per cutoff) 0.006 (0.0125)	(One per cutoff)	(One per cutoff)	(One per cutoff) -0.001 (0.0006)	(One per cutoff) 0.007 (0.0115)	(One per cutoff)	(One per cutoff)
$(\text{Score} \ge \text{cutoff}) \times (\text{School below cutoff})$ belongs to non-elite subsystem)	(0.0103)	(0.0125)	-0.049^{**} (0.0201)	-0.256^{**} (0.0977)	(0.0090)	(0.0113)	-0.023 (0.0191)	-0.142 (0.0921)
Observations Adjusted R ² Mean of DV 1 pt below cutoff Bandwidth	96573 0.181 0.170 10.0	96573 0.165 0.645 10.0	50648 0.167 0.554 10.0	50648 0.114 2.330 10.0	107072 0.208 0.164 10.0	107072 0.183 0.656 10.0	55129 0.179 0.588 10.0	55129 0.132 2.356 10.0

Panel A. Linear, BW=5	(1)	(2)	(3)	(4)	(5)	(6)
Interaction variable	Older sibling is firstborn	Parent has high school education or above	Younger sibling has middle school GPA > median	Younger sibling has hours studied > median	Younger sib MS average COMIPEMS score > median	Distance from home to cutoff school < 2km
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice
$(\text{Score} \ge \text{cutoff}) \times (\text{Interaction})$	$\begin{array}{c} 0.023^{***} \\ (0.0069) \end{array}$	0.001 (0.0067)	0.016^{**} (0.0064)	0.012 (0.0066)	-0.004 (0.0062)	0.005 (0.0109)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$\begin{array}{c} 191557 \\ 0.149 \\ 0.144 \\ 5.0 \end{array}$	$201888 \\ 0.152 \\ 0.145 \\ 5.0$	$210961 \\ 0.160 \\ 0.144 \\ 5.0$	$202290 \\ 0.151 \\ 0.145 \\ 5.0$	$230977 \\ 0.154 \\ 0.143 \\ 5.0$	$222060 \\ 0.163 \\ 0.141 \\ 5.0$
Panel B. Linear, BW=10	(1)	(2)	(3)	(4)	(5)	(6)
Interaction variable	Older sibling is firstborn	Parent has high school education or above	Younger sibling has middle school GPA > median	Younger sibling has hours studied > median	Younger sib MS average COMIPEMS score > median	Distance from home to cutoff school < 2km
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice
$(\text{Score} \ge \text{cutoff}) \times (\text{Interaction})$	$\begin{array}{c} 0.027^{***} \\ (0.0047) \end{array}$	-0.005 (0.0046)	0.019^{***} (0.0044)	0.008^{*} (0.0046)	-0.006 (0.0042)	0.013 (0.0074)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$373653 \\ 0.151 \\ 0.144 \\ 10.0$	$394345 \\ 0.153 \\ 0.145 \\ 10.0$	$ \begin{array}{r} 411692\\ 0.159\\ 0.144\\ 10.0 \end{array} $	$\begin{array}{c} 395119 \\ 0.152 \\ 0.145 \\ 10.0 \end{array}$	$\begin{array}{c} 450972 \\ 0.154 \\ 0.142 \\ 10.0 \end{array}$	433342 0.162 0.141 10.0
Panel C. Quadratic, BW=10	(1)	(2)	(3)	(4)	(5)	(6)
Interaction variable	Older sibling is firstborn	Parent has high school education or above	Younger sibling has middle school GPA > median	Younger sibling has hours studied > median	Younger sib MS average COMIPEMS score > median	Distance from home to cutoff school < 2km
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first choice
$(\text{Score} \ge \text{cutoff}) \times (\text{Interaction})$	0.027^{***} (0.0047)	-0.005 (0.0046)	0.019^{***} (0.0044)	0.008^{*} (0.0046)	-0.006 (0.0042)	0.013 (0.0074)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$373653 \\ 0.151 \\ 0.144 \\ 10.0$	$394345 \\ 0.153 \\ 0.145 \\ 10.0$	$ \begin{array}{r} 411692\\ 0.159\\ 0.144\\ 10.0 \end{array} $	$\begin{array}{c} 395119 \\ 0.152 \\ 0.145 \\ 10.0 \end{array}$	450972 0.154 0.142 10.0	433342 0.162 0.141 10.0

	G (C 1)	•1 1•	1	1 1	1 .	1 , 1 ,	1 1 1		1
Table D 7. Differential	effect of old	er sibling :	admission of	n school	choice	by student	and subling	nair	characteristics
rabio D.r. Dinoronomia	011000 01 010	or broning	administron of	1 5011001	onoice,	by beautifu	and broning	pan	01101 00001 100100

Table D.8: Differentia	al effect of older	sibling admissi	on on school cho	ice by graduation	outcome	
Panel A. Linear, BW=5	(1)	(2)	(3)	(3) (4)		(6)
Sample	Ft	ull	Older siblings a	t non-elite cutoff	Older sibling of subsystem	gs at margin n admission
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first non- elite choice	Cutoff school is first non- elite choice	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
Score \geq cutoff (Score \geq cutoff) \times (Older sibling graduated)	$\begin{array}{c} 0.023^{***} \\ (0.0071) \\ 0.021^{*} \\ (0.0099) \end{array}$	(One per cutoff) 0.020* (0.0102)	$\begin{array}{c} 0.054^{***} \\ (0.0116) \\ 0.071^{***} \\ (0.0155) \end{array}$	(One per cutoff) 0.076*** (0.0162)	$\begin{array}{c} 0.101 \\ (0.0659) \\ 0.160 \\ (0.0893) \end{array}$	(One per cutoff) 0.166 (0.0926)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	58497 0.071 0.085 5.0	58473 0.072 0.085 5.0	$\begin{array}{c} 46284 \\ 0.096 \\ 0.165 \\ 5.0 \end{array}$	$\begin{array}{c} 46260 \\ 0.097 \\ 0.165 \\ 5.0 \end{array}$	$29099 \\ 0.206 \\ 1.521 \\ 5.0$	29058 0.204 1.521 5.0
Panel B. Linear, BW=10	(1)	(2)	(3) (4)		(5)	(6)
Sample	Fi	ull	Older siblings at non-elite cutoff		Older sibling of subsystem	gs at margin n admission
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first non- elite choice	Cutoff school is first non- elite choice	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
Score \geq cutoff (Score \geq cutoff) \times (Older sibling graduated)	$\begin{array}{c} 0.023^{***} \\ (0.0049) \\ 0.022^{***} \\ (0.0068) \end{array}$	(One per cutoff) 0.020** (0.0070)	$\begin{array}{c} 0.039^{***} \\ (0.0078) \\ 0.071^{***} \\ (0.0106) \end{array}$	(One per cutoff) 0.073*** (0.0110)	$\begin{array}{c} 0.117^{**} \\ (0.0449) \\ 0.101 \\ (0.0601) \end{array}$	(One per cutoff) 0.098 (0.0621)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$110194 \\ 0.074 \\ 0.085 \\ 10.0$	$ \begin{array}{r} 110193 \\ 0.076 \\ 0.085 \\ 10.0 \\ \end{array} $	87295 0.099 0.165 10.0	87294 0.101 0.165 10.0	$55203 \\ 0.209 \\ 1.520 \\ 10.0$	55186 0.212 1.521 10.0
Panel C. Quadratic, BW=10 Sample	(1) Ft	(2) ull	(3) Older siblings a	(4) .t non-elite cutoff	(5) Older siblin of subsyster	(6) gs at margin n admission
Dependent variable	Cutoff school is first choice	Cutoff school is first choice	Cutoff school is first non- elite choice	Cutoff school is first non- elite choice	Schools chosen in cutoff school subsystem	Schools chosen in cutoff school subsystem
Score \geq cutoff (Score \geq cutoff) \times (Older sibling graduated)	$\begin{array}{c} 0.019^{***} \\ (0.0063) \\ 0.022^{***} \\ (0.0068) \end{array}$	(One per cutoff) 0.020** (0.0070)	$\begin{array}{c} 0.051^{***} \\ (0.0100) \\ 0.071^{***} \\ (0.0106) \end{array}$	(One per cutoff) 0.073*** (0.0110)	$\begin{array}{c} 0.140^{**} \\ (0.0567) \\ 0.102 \\ (0.0601) \end{array}$	(One per cutoff) 0.099 (0.0622)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$ \begin{array}{r} 110194 \\ 0.074 \\ 0.085 \\ 10.0 \\ \end{array} $	$ \begin{array}{r} 110193 \\ 0.076 \\ 0.085 \\ 10.0 \\ \end{array} $	87295 0.099 0.165 10.0	87294 0.101 0.165 10.0	55203 0.209 1.520 10.0	55186 0.212 1.521 10.0

Panel A. Linear, BW=5	(1)	(2)	(3)	(4)	
Sample	F	ull	Older siblings at margin of subsystem admission		
Dependent variable	Assigned to cutoff school	Assigned to school below cutoff	Assigned to school in subsystem of cutoff school	Assigned to school in subsystem below cutoff	
$Score \ge cutoff$	$\begin{array}{c} 0.044^{***} \\ (0.0024) \end{array}$	-0.050^{***} (0.0025)	0.038^{***} (0.0048)	-0.046^{***} (0.0049)	
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$235381 \\ 0.023 \\ 0.071 \\ 5.0$	$235381 \\ 0.012 \\ 0.116 \\ 5.0$	$118399 \\ 0.027 \\ 0.181 \\ 5.0$	$ \begin{array}{r} 118399 \\ 0.011 \\ 0.224 \\ 5.0 \\ \end{array} $	
Panel B. Linear, BW=10 Sample	(1) F1	(2) ull	(3) (4) Older siblings at margin of subsystem admission		
Dependent variable	Assigned to cutoff school	Assigned to school below cutoff	Assigned to school in subsystem of cutoff school	Assigned to school in subsystem below cutoff	
$Score \ge cutoff$	$\begin{array}{c} 0.046^{***} \\ (0.0017) \end{array}$	-0.048^{***} (0.0017)	0.045^{***} (0.0033)	-0.046^{***} (0.0033)	
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$\begin{array}{c} 459529 \\ 0.024 \\ 0.071 \\ 10.0 \end{array}$	$\begin{array}{c} 459529 \\ 0.012 \\ 0.116 \\ 10.0 \end{array}$	$231571 \\ 0.028 \\ 0.181 \\ 10.0$	$231571 \\ 0.011 \\ 0.224 \\ 10.0$	
Panel C. Quadratic, BW=10 Sample	(1) Fi	(2) ull	(3) Older sibling of subsyster	(4) gs at margin n admission	
Dependent variable	Assigned to cutoff school	Assigned to school below cutoff	Assigned to school in subsystem of cutoff school	Assigned to school in subsystem below cutoff	
$Score \ge cutoff$	$\begin{array}{c} 0.045^{***} \\ (0.0026) \end{array}$	-0.053^{***} (0.0027)	0.039^{***} (0.0051)	-0.050^{***} (0.0053)	
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$ \begin{array}{r} 459529\\ 0.024\\ 0.071\\ 10.0 \end{array} $	$459529 \\ 0.012 \\ 0.116 \\ 10.0$	231571 0.028 0.181 10.0	$231571 \\ 0.011 \\ 0.224 \\ 10.0$	

Table D.9: Effect of older sibling admission on younger sibling assignment outcomes

Panel A1. Linear, BW=5 Dependent variable	(1) Elite scl	(2) hool as firs	(3) t choice
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]
$Score \ge cutoff$	$\begin{array}{c} 0.105^{***} \\ (0.0290) \end{array}$	* 0.067*** (0.0140)	* 0.022** (0.0085)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$4991 \\ 0.034 \\ 0.584 \\ 5.0$	$14654 \\ 0.022 \\ 0.763 \\ 5.0$	$ 18941 \\ 0.020 \\ 0.903 \\ 5.0 $
Panel A2. Linear, BW=5 Dependent variable	(1) Number o	(2) of elite sch	(3) ools chosen
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]
Score \geq cutoff	0.575^{**} (0.1553)	* 0.323*** (0.0985)	* 0.200* (0.0920)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$ 4991 \\ 0.048 \\ 2.412 \\ 5.0 $	$14654 \\ 0.048 \\ 3.840 \\ 5.0$	$ 18941 \\ 0.071 \\ 5.550 \\ 5.0 $
Panel A3. Linear, BW=5 Dependent variable	(1) Elit	(2) te assignm	(3) ent
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]
$Score \ge cutoff$	0.032 (0.0240)	0.023 (0.0143)	-0.009 (0.0139)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	$ 4991 \\ 0.025 \\ 0.177 \\ 5.0 $	$ \begin{array}{r} 14654 \\ 0.022 \\ 0.223 \\ 5.0 \end{array} $	$ 18941 \\ 0.011 \\ 0.302 \\ 5.0 $

Table D.10: Effect of older sibling admission to an elite school on younger sibling elite school choice and assignment

Table D.10 (co	ontinued)			
Panel B1. Linear, BW=10 Dependent variable	(1) Elite sch	(2) nool as first	(3) choice	
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]	
$Score \ge cutoff$	0.126***	* 0.069***	0.030***	
	(0.0197)	(0.0095)	(0.0058)	
Observations	9720	28919	37213	
Adjusted R^2	0.039	0.027	0.018	
Mean of DV 1 pt below cutoff	0.582	0.763	0.903	
Bandwidth	10.0	10.0	10.0	
Panel B2, Linear, BW=10	(1)	(2)	(3)	
Dependent variable	Number of	of elite scho	ols chosen	
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]	
$Score \ge cutoff$	0.518***	* 0.393***	0.221***	
	(0.1055)	(0.0678)	(0.0627)	
Observations	9720	28919	37213	
Adjusted R^2	0.060	0.054	0.066	
Mean of DV 1 pt below cutoff	2.408	3.841	5.550	
Bandwidth	10.0	10.0	10.0	
Panel B3. Linear, BW=10	(1)	(2)	(3)	
Dependent variable	Elite assignment			
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]	
Score > cutoff	0.034*	0.037***	0.009	
_	(0.0164)	(0.0099)	(0.0096)	
Observations	9720	28919	37213	
Adjusted R^2	0.034	0.031	0.019	
Mean of DV 1 pt below cutoff	0.176	0.223	0.302	
Bandwidth	10.0	10.0	10.0	

-1)

Table D.10 (co	munuea)		
Panel C1. Quadratic, BW=10 Dependent variable	(1) Elite sch	(2) nool as firs	(3) t choice
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]
Score \geq cutoff	$\begin{array}{c} 0.113^{***} \\ (0.0312) \end{array}$	* 0.066*** (0.0152)	* 0.023 ** (0.0093)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	9720 0.039 0.582 10.0	28919 0.027 0.763 10.0	$\begin{array}{c} 37213 \\ 0.018 \\ 0.903 \\ 10.0 \end{array}$
Panel C2. Quadratic, BW=10 Dependent variable	(1) Number o	(2) of elite sche	(3) pols chose
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]
$Score \ge cutoff$	0.667^{***} (0.1662)	* 0.320*** (0.1059)	* 0.227* (0.0995)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff Bandwidth	9720 0.060 2.408 10.0	$28919 \\ 0.054 \\ 3.841 \\ 10.0$	$37213 \\ 0.067 \\ 5.550 \\ 10.0$
Panel C3. Quadratic, BW=10 Dependent variable	(1) Elit	(2) te assignme	(3)ent
Baseline predicted probability of selecting elite school as first choice	[0, .6]	(.6, .8]	(.8, 1]
$Score \ge cutoff$	0.026 (0.0253)	0.016 (0.0153)	-0.006 (0.0149)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff	9720 0.034 0.176	28919 0.031 0.223	$37213 \\ 0.019 \\ 0.302$

+:-)

	140	IC D.11. IV	cot for bara	nee or order si	oning covariat	05		
Panel A. Linear, BW=5	(1)	(2)	(3)	(4)	(5)	(6)	(7) Meen	(8)
	Parental education (years)	Male	Hours studied per week	Middle school GPA	Number of siblings	Birth order (1=oldest)	COMIPEMS score of MS peers	Same-sex sibling pair
Score \geq cutoff	-0.029 (0.0298)	$0.000 \\ (0.0040)$	$0.004 \\ (0.0295)$	-0.005 (0.0060)	0.010 (0.0116)	0.010 (0.0097)	$0.002 \\ (0.0544)$	-0.003 (0.0041)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff SD of DV 1 pt below cutoff	$\begin{array}{c} 189166 \\ 0.105 \\ 10.649 \end{array}$	235381 0.072 0.431	$\begin{array}{c} 187241 \\ 0.071 \\ 5.080 \end{array}$	235381 0.182 8.174	$ \begin{array}{r} 192270 \\ 0.053 \\ 2.322 \end{array} $	$\begin{array}{c} 191734 \\ 0.030 \\ 1.673 \end{array}$	$235360 \\ 0.294 \\ 63.055$	235381 0.001 0.519
Bandwidth	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
p-value for joint significance of	$Score \ge cut$	off coeffici	ents					0.69
Panel B. Linear, BW=10	(1)	(2)	(3)	(4)	(5)	(6)	(7) Moon	(8)
	Parental education (years)	Male	Hours studied per week	Middle school GPA	Number of siblings	Birth order (1=oldest)	COMIPEMS score of MS peers	Same-sex sibling pair
Score \geq cutoff	0.001 (0.0205)	-0.004 (0.0028)	$\begin{array}{c} 0.013\\ (0.0201) \end{array}$	$0.004 \\ (0.0041)$	$0.007 \\ (0.0080)$	$\begin{array}{c} 0.011 \\ (0.0066) \end{array}$	$0.037 \\ (0.0375)$	-0.000 (0.0028)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff SD of DV 1 pt below cutoff	$368919 \\ 0.104 \\ 10.648$	459529 0.073 0.432	$365134 \\ 0.072 \\ 5.080$	459529 0.184 8.174	374962 0.050 2.322	$373935 \\ 0.027 \\ 1.674$	$\begin{array}{c} 459485 \\ 0.295 \\ 63.054 \end{array}$	$\begin{array}{c} 459529 \\ 0.000 \\ 0.519 \end{array}$
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
p-value for joint significance of	$Score \ge cut$	off coeffici	ents					0.95
Panel C. Quadratic, BW=10	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Parental education (years)	Male	Hours studied per week	Middle school GPA	Number of siblings	Birth order (1=oldest)	Mean COMIPEMS score of MS peers	Same-sex sibling pair
Score \geq cutoff	-0.022 (0.0320)	-0.000 (0.0044)	$\begin{array}{c} 0.021\\ (0.0317) \end{array}$	$0.002 \\ (0.0065)$	0.001 (0.0126)	-0.000 (0.0105)	-0.013 (0.0586)	-0.001 (0.0045)
Observations Adjusted R^2 Mean of DV 1 pt below cutoff SD of DV 1 pt below cutoff	$368919 \\ 0.104 \\ 10.648$	459529 0.073 0.432	$365134 \\ 0.072 \\ 5.080$	459529 0.184 8.174	374962 0.050 2.322	373935 0.027 1.674	$\begin{array}{c} 459485 \\ 0.295 \\ 63.054 \end{array}$	459529 0.000 0.519
Bandwidth	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
p-value for joint significance of	$Score \ge cut$	off coeffici	ents					0.67

Table D.11: Test for balance of older sibling covariates