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The gender gap in science, technology, engineering, and mathe-
matics (STEM) widens during high school, due both to differences
in student choices and institutional barriers to accessing STEM
education. Using rich data from Mexico City’s centralized assign-
ment system and a structural model of high school choice, we doc-
ument strong demand for elite STEM and relatively weak demand
for non-elite STEM programs. Decomposition and counterfactual
simulations demonstrate that most of the gap is due to gendered
choices, with males more strongly preferring STEM. Test-based as-
signment restricts elite STEM access for females, who have lower
placement test scores despite similar low-stakes exam scores.
JEL: O15, I24, J16, J24
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Women are underrepresented in science, technology, engineering, and math
(STEM) roles throughout the world. In Mexico, the STEM gender gap is large,
with women earning fewer than a third of STEM post-secondary degrees (López-
Bassols et al., 2018). This STEM gender gap has important welfare consequences.
First, fewer females in STEM can result in less innovation (Hong and Page, 2004;
Hofstra et al., 2020), less STEM persistence overall (Griffith and Main, 2019),
and aggregate productivity losses in Mexico and elsewhere (Ostry et al., 2018;
Cuberes, Saravia and Teignier, 2022). Second, STEM occupations have higher
pay in many contexts (Kahn and Ginther, 2017), paying 14 to 18 percent more
among females in Mexico.1 The STEM premium is not limited to high-skilled
professions; it also exists in occupations that only require technical or vocational
education, and such positions compose a substantial fraction of the workforce
(Rothwell, 2013). Thus, increasing female participation in STEM can increase
incomes throughout the education and skill distribution. Third, STEM fields
build fundamental skills like creativity, problem-solving, confidence, and team-
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work, that are increasingly important globally (UNICEF, 2020). For these rea-
sons, there is substantial interest in reducing the STEM gender gap in Mexico
and Latin America (Bello, 2020; Uribe, 2021), with calls to identify and target
obstacles that keep females away from STEM (UNESCO, 2017).
Within education, these obstacles can be classified into two broad categories.

First, preferences may be gendered (Rask, 2010; Zafar, 2013), arising from fac-
tors like culture, role models, family expectations, and discrimination (Kahn
and Ginther, 2017). Second, institutional features may limit access to preferred
schools, particularly for females.2 Specifically, test-based admissions policies give
lower priority to low-scoring students, and females often score lower on high-stakes
exams (Montolio and Taberner, 2021) despite performing similarly or better on
other academic measures. The relative contribution of preferences and access to
the STEM gap is an empirical question.
We examine these issues by estimating a rich model of student preferences

over STEM and non-STEM options, including both highly-demanded elite STEM
programs and non-elite technical STEM programs. We study Mexico City high
schools in 2007 and 2008, where females were 11 percentage points (p.p.) less
likely to attend STEM programs than males, with the gap arising in both elite
and non-elite programs. Mexico City has a centralized high school choice policy
in which students submit a ranked list of school programs and receive assignment
priorities based on their performance on a placement test. We estimate utilities for
different program types by gender, geographic location, and other student charac-
teristics including academic achievement and parental education. Importantly, we
identify student ability using performance on a low-stakes exam that is separate
and imperfectly correlated with the placement test. This allows us to estimate
preferences for all students and program types under relatively weak assumptions,
even though low-scoring students are never admitted to highly-demanded schools.
We then use the model results to formally decompose the STEM gap, quantify-
ing the contributions of preferences, placement scores, and other characteristics.
Finally, we implement various counterfactual exercises to further understand the
roles of preferences and access. These counterfactuals fully simulate the assign-
ment process to account for general equilibrium effects arising from competition
for limited program capacities.
Several key findings emerge from the model estimates. First, the marginal util-

ity for elite STEM programs (relative to traditional programs) is high for both
males and females and is low for non-elite STEM programs. Second, preferences
for STEM programs are highly gendered, with stronger male STEM preference,
holding constant other factors. The model also shows that high parental educa-
tion, grade point averages (GPA), and math test scores predict stronger prefer-

2“Access” can be understood to encompass a wide range of both institutionalized and de facto con-
tributors. We use the term “access” to more narrowly refer to admissions criteria that are formally
considered in granting entry into a field or school. Examples of explicit merit-based tracking into schools
include Trinidad and Tobago (Jackson, 2010), Ghana (Ajayi, 2022), Romania (Pop-Eleches and Urquiola,
2013), and the U.S. (Corcoran and Baker-Smith, 2018).
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ence for elite STEM schools. However, these differences are small compared to the
gender difference, and there are few qualitative gender differences with respect to
these dimensions of heterogeneity.

The decomposition exercise shows that these gendered preferences contribute
substantially to the STEM gender gap, explaining the majority of both the elite
and non-elite STEM gaps. Access constraints are important when considering
elite STEM programs, with placement test score differences explaining 33% of
the elite STEM gap. This means the test-based admissions policy is a barrier
for females, who score 0.2 standard deviations (SD) lower on the placement test
despite having similar performance on the low-stakes exam and higher middle
school GPAs. Other student characteristics, including place of residence, explain
very little of the gap.

The counterfactual simulations confirm the key roles of preferences and place-
ment test scores while accounting for general equilibrium effects. The overall
STEM gap would reverse sign if females had the same preferences as observably
similar males, and the elite STEM gap would close by over 20% in a scenario
where female placement test scores resembled male scores. Finally, we simulate
affirmative action policies to benchmark the extent of intervention required to
close the STEM gap in the presence of preference and score differences. Closing
the STEM gap would require giving females increased priority at STEM programs
equivalent to a 0.6 SD higher placement test score. The aggregate welfare effects
of such a policy appear small.

Together, these results highlight the critical role of gendered preferences and
the question of what shapes these preferences. We provide suggestive evidence on
why females have weaker preference for STEM by examining school characteristics
by type. STEM schools have fewer female staff and female students, and elite
STEM schools have substantially higher failure rates. Thus, consistent with other
literature, females may choose STEM less because they lack role models, have
fewer female peers, and/or are more averse to challenging tasks and failure.3 At
the same time, many studies examine additional causes of gendered preferences.
Explanations include female perceptions that non-STEM work is more pro-social
and cooperative (Croson and Gneezy, 2009; Eccles andWang, 2016; Shi, 2018) and
more flexible with respect to work-life balance and child-bearing (Tan-Wilson and
Stamp, 2015; Jiang, 2021). Studies also highlight female comparative non-STEM
advantage (Delaney and Devereux, 2019; Goulas, Griselda and Megalokonomou,
2022), lower female self-evaluations for math and science performance (Exley and
Kessler, 2022), higher female risk aversion (Eckel and Grossman, 2008; Croson and
Gneezy, 2009), and higher female dislike for competition (Niederle and Vesterlund,

3For studies on role models, see Carrell, Page and West (2010), Bottia et al. (2015), Porter and Serra
(2019), and Canaan and Mouganie (2023). For studies on female peers, see Schneeweis and Zweimüller
(2012), Griffith and Main (2019), Mouganie and Wang (2020), and Schøne, Simson and Strøm (2020).
With respect to aversion to challenge and failure, Niederle and Yestrumskas (2008) find that females
are more likely to shy away from challenging tasks, and Owen (2010) and Ahn et al. (2019) show that
females are more affected by poor grades in STEM.
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2010; Iriberri and Rey-Biel, 2019).

However, these preferences and beliefs are influenced by many factors, includ-
ing gendered stereotypes about STEM ability (Cvencek, Meltzoff and Greenwald,
2011; Bian, Leslie and Cimpian, 2017), societal beliefs about gender equality
(Guiso et al., 2008; Nollenberger, Rodŕıguez-Planas and Sevilla, 2016), and gen-
dered expectations from parents (Eccles, Jacobs and Harold, 1990; McCoy, Byrne
and O’Connor, 2022) and teachers (Lavy and Sand, 2018; Burgess et al., 2022;
Rakshit and Sahoo, 2023). Additionally, STEM spaces can be exclusive and
discriminatory (Cabay et al., 2018; Astorne-Figari and Speer, 2019; Diele-Viegas
et al., 2021). Together, this means that males receive more encouragement to pur-
sue STEM jobs and education (Ceci and Williams, 2007; Lambrecht and Tucker,
2019; Murciano-Goroff, 2022). Several recent studies confirm the importance of
these environmental factors in Mexico and Latin America (Bastarrica et al., 2018;
Agurto et al., 2021; Del Carpio and Guadalupe, 2022; Del Carpio and Fujiwara,
2023).

At the same time, access issues are important for highly demanded schools.
Test-based admissions contribute to gaps elsewhere (Corcoran and Baker-Smith,
2018), and gender gaps are likely with lower female test scores in many contexts
(Hyde et al., 2008; Stoet and Geary, 2013). This is a particular concern when
there is gender bias in standardized test scores (Saygin, 2020) and when females
are negatively affected by high stakes, high pressure settings like testing (Booth
and Lee, 2021; Montolio and Taberner, 2021; Arenas and Calsamiglia, 2022).

In our analysis, we examine two less-studied aspects of the STEM gender gap.
First, we show how the STEM gender gap starts before entering high school,
expanding on studies focused on the university level (Card and Payne, 2021;
Lichtenberger and George-Jackson, 2013). Second, we examine the gap in both
highly-demanded academic STEM programs and less-selective technical STEM
programs, where preferences likely play a greater role than access. While much of
the existing literature on STEM gender gaps considers elite education and high-
skilled professions, we additionally focus on the technical programs that serve as
important labor market entry points for many economies (Rothwell, 2013).

Our counterfactual analyses are similar to Corcoran and Baker-Smith (2018),
but we tie the simulations to a model of student preferences, adding to an active
literature on structural models of student preferences within centralized assign-
ment mechanisms.4 We follow Fack, Grenet and He (2019) in assuming that stu-
dents are assigned to their most-preferred feasible program conditional on their
assignment priority. We allow for rich preference heterogeneity with respect to
observable characteristics, following Abdulkadiroğlu et al. (2020).

4See, for example, Hastings, Kane and Staiger (2009), Glazerman and Dotter (2017), Agarwal and
Somaini (2018), Bordón, Canals and Mizala (2020), Calsamiglia, Fu and Güell (2020), Kapor, Neilson
and Zimmerman (2020), Pathak and Shi (2021), and Beuermann et al. (2023).
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I. Context

A. STEM in Mexico

While the STEM gender gap is common throughout the world, its magnitude
depends on the context and definition of STEM (Ceci et al., 2014). We use an
inclusive definition of STEM following Rothwell (2013), which classifies STEM
occupations as those that require substantial knowledge in any one STEM field.
It includes fields with higher female representation like nursing, fields requiring
higher education like engineering, and fields with lower education like equipment
maintenance. The nonprofessional STEM fields are a large fraction of STEM
jobs, particularly in Mexico and other developing countries.
We describe the returns to STEM in Mexico using the 2010 and 2012 Encuesta

Nacional de Ocupación y Empleo (INEGI, 2012b). Online Appendix Table A1
shows that, among females, STEM jobs pay 14 to 18 percent more than non-
STEM jobs after controlling for a set of basic demographics.5 This premium
exists among low education and high education workers, and is the same or larger
for females relative to males. The results are consistent with STEM wage premia
elsewhere (Even, Yamashita and Cummins, 2023) and with causal studies on the
returns to STEM (Kirkeboen, Leuven and Mogstad, 2016; Ng and Riehl, 2023).
We also find that high school STEM education is an important part of the

STEM pipeline in Mexico, using the 2010 and 2012 Encuesta Nacional de Inserción
Laboral de los Egresados de la Educación Media Superior (INEGI, 2012a). Online
Appendix Table A2 shows that females who study STEM in high school are 42%
more likely to study STEM in college and 140% more likely to work in STEM
(186% more likely among the sample who do not proceed to college). Females
who study STEM in college are 540% more likely to work in STEM. Together,
these results suggest that studying STEM in high school can be an important
avenue for raising female wages and increasing the representation of females in
STEM jobs.6 Additional details are included in online Appendix A.

B. School choice in Mexico City

Mexico City has many public high school options, with students choosing from
more than 600 academic programs available throughout the area. We delineate

5We control for urban residence, age, household size, household headship, and marital status. We
also control for parental education when it is observed in the household roster (i.e., for children who are
currently living with their parents). Among this selected sample, the STEM premium for females is 11
to 19 percent and remains statistically significant.

6Prior research shows that the effectiveness of STEM-specific high school programs is context de-
pendent. Some studies find positive impacts of STEM program attendance on STEM course-taking and
interest (Means et al., 2016) and on STEM test scores and rates of STEM test-taking (Wiswall et al.,
2014), while others find null (Eisenhart et al., 2015; Bottia et al., 2018) or heterogeneous results (Gnagey
and Lavertu, 2016). In Mexico City, Dustan, de Janvry and Sadoulet (2017) show that attending selec-
tive STEM programs increases end-of-high-school test scores, and a working paper by Ortega Hesles and
Dougherty (2017) discusses the returns to technical schools.
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five different types of programs: elite STEM, non-elite STEM (i.e., technical
STEM), elite non-STEM, technical non-STEM, and traditional public school pro-
grams (which are non-technical, non-elite, and non-STEM).

Two subsystems of programs are considered elite. The elite STEM programs
focus on science and engineering and are affiliated with the Instituto Politécnico
Nacional (IPN), a prestigious national polytechnic university. IPN also offers a
few elite non-STEM programs, focused on social sciences and business administra-
tion. The remaining elite non-STEM programs are affiliated with the Universidad
Nacional Autónoma de México (UNAM), and offer broader, liberal arts-style cur-
ricula. Both elite subsystems are highly demanded and draw students from all
areas of Mexico City (Dustan and Ngo, 2018) despite being clustered near the
city center (Figure 1, Panel A).7

The remaining non-elite programs are less competitive, drawing most of their
students from nearby neighborhoods (Figure 1, Panel B). The non-elite STEM
programs provide STEM-focused technical training and are primarily operated
by the Colegio Nacional de Educación Profesional Técnica (CONALEP) and Di-
rección General de Educación Tecnológica Industrial (DGETI). The technical non-
STEM programs also provide technical training but are specialized in non-STEM
areas like business administration.8 Non-elite STEM and technical non-STEM
programs are often present on the same high school campus. Finally, traditional
public schools offer general academic curricula. Students from any high school
program can go on to higher education, but students in UNAM-affiliated high
schools receive favorable consideration in UNAM university admissions.

Participation in a centralized choice process is mandatory for public school en-
rollment; students who do not submit any choices cannot attend a public school.
The choice process is run by Comisión Metropolitana de Instituciones Públicas
de Educación Media Superior de la Zona Metropolitana de la Ciudad de México
(COMIPEMS) and occurs during and after students’ final year of middle school
(grade nine). First, students rank their preferred programs, listing up to a max-
imum of twenty options. Students then take a multi-subject placement test.9

Finally, students are assigned to programs using a serial dictatorship algorithm, a
special case of the student-proposing deferred acceptance algorithm (SPDA) char-
acterized by Gale and Shapley (1962). A computer orders all students according
to their placement test scores, and moving from highest scoring to lowest scoring,
assigns each student to her highest-ranked program with a remaining seat when
her turn arrives. Programs that fill up thus have a “cutoff score” equal to the
placement score of the student assigned to the final seat.10

7See Dustan, de Janvry and Sadoulet (2017) for more on Mexico’s elite programs and their returns.
8See Avitabile, Bobba and Pariguana (2017) and Ortega Hesles and Dougherty (2017) for additional

discussion on the constraints and returns to these educational tracks.
9All questions on the exam are equally weighted with no penalty for incorrect answers.

10The schools decide in real-time whether to accept or reject the group of students with the same
score. In addition, the elite IPN and UNAM programs require that students have a middle school GPA
of 7/10 or above, but this standard is low enough that it almost never binds.



7

Information on program options and the choice process was widely available
during this time period. In addition to receiving detailed printed materials, in-
cluding a full list of programs, students had access to large, well-attended ori-
entation expos. The elite programs regularly receive media attention about the
competitiveness of their admissions, suggesting that these choices are salient for
most students (Gonzalez, 2003). For all programs, cutoffs from prior years are
publicly available and provided in a centralized website. Cutoffs are fairly sta-
ble over time, allowing students to anticipate future cutoffs (see online Appendix
Figure A1).
There is full compliance with the assignment mechanism; students cannot enroll

at a public school to which they were not assigned. Most participating students
(85%) are assigned through this algorithm. The remaining unassigned students
chose programs with cutoffs higher than their own score. These students can
later choose from programs with seats remaining after the computerized assign-
ment. We do not observe this outcome for most years, but show in 2005 that
the STEM gender gap is similar before and after this later round of assignment
(online Appendix Table A3).
Separately, students also complete a low-stakes multi-subject standardized exam,

Evaluación Nacional del Logro Académico en Centros Escolares de Educación Me-
dia Superior (ENLACE 9). ENLACE 9 scores have no effects on middle school
graduation or any other student outcomes but provide a measure of student ability
in a non-pressurized environment.
Most middle school students participate in the choice process (COMIPEMS,

2010), though some apply only to private schools or drop out entirely. Students
effectively exercise their choices, with many attending schools that are far away
(Dustan and Ngo, 2018). Using data from a 2017 survey on commuting, Encuesta
Origen Destino en Hogares de la Zona Metropolitana del Valle de México, EOD,
(INEGI, 2017), we find that both male and female students travel an average of 8
kilometers (44 minutes) to school and use a mix of transportation modes (online
Appendix Table A4).

II. Data

We use data from the 2007 and 2008 COMIPEMS administrative databases
(SEP, 2008b). This includes each student’s ranked program list, placement score,
and final assignment status and program. It also includes gender, middle school
GPA, middle school graduation status, self-reported parental education levels,
and home postal codes.11 The database covers all students participating in the
COMIPEMS choice process. Since participation is mandatory for attendance, this
is the universe of students interested in attending public high schools. The major-
ity of these students are finishing middle school (ninth graders). The remaining

11We use the male/female classifications in the data that are extracted from national identification
records. We do not have data on students’ self-identified genders or on any non-binary gender categories.
We follow the literature in referring to this gap as the gender gap.
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students graduated previously but are returning because they failed to graduate
on time for the previous COMIPEMS cycle, or, more infrequently, were assigned
elsewhere in a previous cycle and are attempting to enter a different school. We
do not observe students who drop out entirely or only apply to private schools.
We explore selection into the COMIPEMS sample by examining all students

in the Mexico City area who take the ENLACE 9, which is administered to
ninth grade students in all public and some private schools. Online Appendix
Table A5 shows that 80% of ENLACE 9 takers appear in the COMIPEMS data;
this is similar to government reports (COMIPEMS, 2010). Females are 1 p.p.
more likely to participate. While COMIPEMS students are positively selected
with respect to ENLACE 9 score, the degree of selection is quite similar across
genders. Below, we find that a large gender gap in placement test scores persists
even after controlling for ENLACE 9 scores.
Our analysis restricts the sample to students eligible for assignment and for

whom we are able to estimate preferences.12 We exclude students whose address
is either invalid (missing home and middle school) or outside the COMIPEMS
area. For students with no home address but with a middle school, we use the
location of their middle school as their address. We also exclude adults who are
returning to school, as they are substantially different from the majority of the
students. Excluded students are 3.2% of all assignable students. Analyses of the
gap in assigned programs only include students who were assigned to a program
in the computerized assignment process.
We match ninth grade students in our analytical sample to their individual

ENLACE 9 exam scores (SEP, 2008a), matching 96% of these students success-
fully.13 Students who have already graduated middle school do not take the exam,
so they are left unmatched.
We supplement school choice data with geographic information system (GIS)

data to locate postal codes (SPM, 2014; INEGI, 2014) and schools (SEP, 2008c).
Postal codes are small (Dustan and Ngo, 2018), and we proxy for students’ home
locations using postal code centroids. We use the Open Source Routing Machine,
OSRM, (OSRM, 2023; Geofabrik, 2018) to calculate the shortest driving distances
between schools and home postal codes. OSRM is a free, publicly available ap-
plication and has been used to accurately measure commute-relevant distances
(Luco, 2019; Kutscher, Nath and Urzúa, 2023). In additional models, we use
straight-line distance and travel time as alternate measures. We estimate travel
time using the relationship between driving distance and commute time from a
model based on the 2017 EOD commute survey (online Appendix A). We prefer
the OSRM driving distance because it provides a more accurate estimate of travel
costs than straight-line measures (Kutscher, Nath and Urzúa, 2023), and is less
subject to measurement error and changing traffic patterns than estimated travel

12Students are not eligible for assignment if they failed middle school or scored below a minimum score
on the placement exam. They are dropped from our analysis.

13We restrict our analysis to the 2007 and 2008 cohorts because we do not have ENLACE 9 scores for
other cohorts.
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time from 2017.
Finally, we classify the high school programs as STEM or non-STEM using

the Brookings STEM occupational categories (Rothwell, 2013). Specifically, we
identify all possible occupational matches for each program and take the average
STEM classification for them. We label programs with average STEM classifi-
cations of 0.5 or more as STEM. Each classification was done independently by
two people, with discrepancies reconciled by a third individual. The program-
level STEM classifications are presented in online Appendix Table A6. Examples
of STEM programs include electronics, agro-industrial technician, and nursing,
while examples of non-STEM programs include social work, tourism, and busi-
ness.
Table 1 presents summary statistics for academic outcomes, school choices,

demographics, and geography by gender. With respect to academics, males sig-
nificantly outperform females on the placement test, scoring 3.9 points (0.2 SD)
higher than females. The low-stakes ENLACE 9 does not show the same dispar-
ity: males score 0.14 SD higher in math, while females score 0.21 SD higher in
Spanish, such that overall performance is quite similar. Online Appendix Table
A7 presents regression results showing that ENLACE 9 subscores explain about
65% of the variation in placement test scores. Conditional on ENLACE 9 sub-
scores, males have an even larger advantage in placement test results than in the
uncontrolled comparison. Females obtain 0.54 SD higher middle school GPAs
than males. Figure 2 displays the densities of these four indicators. Panel A
shows large differences in placement test scores throughout the distribution, and
Panel D shows strikingly different middle school GPA distributions.
Males choose STEM programs more than females. STEM programs are 31.5%

of male choice portfolios (10.5% elite STEM and 21.0% non-elite STEM), com-
pared to 21.6% of female choice portfolios (6.6% elite STEM and 15.0% non-elite
STEM). Females list slightly more programs than males (9.6 versus 9.4), and are
more likely to list elite non-STEM, technical non-STEM, and traditional pro-
grams. Males and females both list programs that are 12.1 km away on average.
Males are slightly more likely to have a highly educated parent and are 7 p.p.

more likely to be middle school graduates, reflecting their higher rate of failing to
graduate from middle school on time and needing to participate in the following
admissions cycle. Overall geographical access to schools is quite similar, with
students living 11.5 to 11.6 km away from their closest elite STEM school and
2.9 km away from their closest non-elite STEM options.
Table 2, Panel A summarizes program assignment by gender for assigned stu-

dents. 38.7% of males are assigned to STEM programs compared to 27.6% of
females, generating an 11.1 p.p. STEM gender gap (5.6 and 5.5 p.p. for elite
STEM and non-elite STEM, respectively).14 Females are 1.2, 2.9, and 6.9 p.p.
more likely to be assigned to elite non-STEM, technical non-STEM, and tra-

14The gender gap among public middle school students is similar, at 10.9 p.p. For this group, private
high schools are unlikely as an outside option so assignment closely mirrors enrollment.
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ditional programs, respectively. Females are also assigned to programs 0.3 km
closer than males. Panel B shows that females are 5.7 p.p. more likely to be left
unassigned by the algorithm, compared to a male non-assignment rate of 11.7%.
Figure 3 shows the STEM gender gap by placement test score percentile. The

total gap is higher for very low scorers and for high scorers, exceeding 15 p.p.
at the top of the score distribution. The gap in non-elite STEM assignment
dominates for low scores, and the gap in elite STEM assignment grows at higher
scores, as assignment to more competitive programs becomes feasible.

III. Methods

This section explains the discrete choice model used to estimate student prefer-
ences, the STEM gap decomposition exercise, and the counterfactual simulations.

A. Student preferences and their estimation

We model student i as having preferences over programs j ∈ {1, ..., J}, which
depend on the interaction of program and student characteristics. Students are
partitioned into mutually exclusive cells c(Xi,Mi), based on their covariates Xi

and gender Mi. Program characteristics Zij consist of indicators for program type
and distance from the student’s home. Allowing mean utilities to differ at the
program level, assuming linear preferences with additive separability, and fixing
one covariate cell as the base group gives the following expression for utility from
assignment to program j:

(1) Uij = δj − dij + Zijβc(Xi,Mi) + ηij = Vij + ηij ,

where δj capture the base group’s mean utilities for each program, and βc(Xi,Mi)

allows each cell to have different utilities from distance and program types. The
base group’s utility from distance dij is normalized to −1, and ηij are unobserved
idiosyncratic tastes.
We estimate student preferences under the assumption that the COMIPEMS

assignment mechanism results in stable matches. This follows Fack, Grenet and
He (2019), who show that stability is a weaker assumption than common alter-
natives. Specifically, “weak truth-telling” assumes that students truthfully rank
programs and that all unlisted programs are less-preferred than all listed pro-
grams. In Mexico City, students rarely exhaust all elite options in their ranked
lists. Instead, they often list a few elite programs and then list less-competitive,
neighborhood programs. This is more likely due to students’ beliefs about their
likelihood of acceptance into the marginal elite school, conditional on scoring too
low for assignment to the already listed elite schools, rather than students having
lower preferences for unlisted elite options (Ali and Shorrer, 2021).
In contrast, stability assumes that students are assigned to their most-preferred

program that was ex post feasible given their assignment priority. This is plausible
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in Mexico City, where information on program feasibility is available and students
can list enough programs that they are assigned to their most-preferred feasible
program. Program cutoff scores are stable from year to year (online Appendix
Figure A1), and these cutoffs are public for applicants to observe. Students apply
before knowing their placement scores and imperfectly predict their achievement
(Bobba and Frisancho, 2022), but this uncertainty is mitigated by the ability to
rank many programs. Only 2.7% of students exhaust all 20 choices, suggesting
that students are not constrained by the number of options they can list.

Stability has an additional benefit over truth-telling models with respect to
“mistakes,” or misordered rankings, in the submitted choice lists. Specifically,
stability allows for robust preference estimation under payoff-irrelevant mistakes,
i.e., omissions or misorderings that do not change final assignments (Rees-Jones
and Shorrer, 2023). Payoff-relevant mistakes (those that affect assignments) can
bias parameter estimates. The data do not permit us to identify mistakes, but
we present an exploratory exercise here. We define a potential payoff-relevant
“mistake” as a portfolio containing a feasible program whose cutoff is one standard
deviation (20 points) higher than the cutoff of the assigned program, such that the
student could have been admitted to a more-competitive program but ranked it
below a less-competitive one. These could reflect mistakes or true preferences for
the lower-cutoff program. Online Appendix Table A8 shows that the overall rate
of payoff-relevant “mistakes” is low, at 9.1%,15 with even lower rates of mistakes
affecting STEM assignment. Rates are generally similar for males and females.

These institutional features suggest that estimating preferences under the sta-
bility assumption is reasonable. Fack, Grenet and He (2019) show that, asymp-
totically, stability nests truth-telling—even when students rank programs in order
of preference and prefer listed programs to unlisted ones, empirical approaches
based on stability alone still consistently recover preference parameters.16

Estimating student preference parameters is straightforward under the stability
assumption. Here, student i’s feasible programs are those whose cutoff scores
s
¯j

are less than or equal to her placement test score si: Ji =
{
j : si ≥ s

¯j
}
.17

Stability implies that among all programs in this “personalized choice set,” her
most-preferred is the one to which she was assigned, denoted by Ai:

Ai = argmax
j∈Ji

Uij .

We first construct each student’s personalized choice set Ji using her placement

15This is consistent with rates reported in other studies. These rates have been interpreted as suffi-
ciently low enough to be minimally consequential (Rees-Jones and Shorrer, 2023).

16The drawback of assuming stability alone when truth-telling holds is that empirical approaches based
on truth-telling use students’ full portfolios for preference estimation, making them more efficient than
stability-based approaches that only use the assigned program.

17A 7.0 GPA or above is also required to be considered at UNAM and IPN programs, so it is part of
assignment priority at those programs. We account for this in the empirical analysis by including the
GPA cutoff in the feasibility requirement for these programs.



12

test score and program-level cutoffs from her COMIPEMS year. Assuming that
ηij is i.i.d. extreme value type I, Fack, Grenet and He (2019) show that Equation
1 can be estimated using a conditional logit with the personalized choice sets.
We follow this approach while accounting for features specific to the institutional
and empirical context. First, we allow for flexible preference heterogeneity across
geographical regions r and exam years t by estimating preferences separately
by region-year cell. While families may sort spatially with respect to schools,
geographical access to STEM schools is similar for males and females (Table 1),
suggesting that residential sorting is not gendered. We separate by region to com-
pare among students who have similar geographical access to different program
types, dividing into three regions: the Federal District, East State of Mexico, and
West State of Mexico. We denote the region-year-specific observable utilities by
Vijrt = δjrt − dij + Zijβc(Xi,Mi)rt. Second, we aggregate non-elite programs of
the same type (non-elite STEM, technical non-STEM, and traditional) outside
of the region into region-year-specific alternatives.18 Finally, because some stu-
dents remain unassigned by the computerized assignment process, we consider
“unassigned” to be the outside option available in every student’s choice set and
normalize its utility to zero.

The conditional likelihood for student i’s assignment outcome is:

(2) L (Ai|c(Xi,Mi),ZZZi, dddi, s
¯
s
¯
s
¯
t, si) =

exp (ViAirt)∑
j∈Ji

exp (Vijrt)
,

where ZZZi and dddi are matrices containing the student-program covariates and dis-
tances for all programs j ∈ Ji, respectively; s

¯
s
¯
s
¯
t contains all program cutoff scores in

year t, and si is the student’s placement test score. Covariate cells are determined
by the interaction of indicators for male gender, above-median middle school
GPA, above-median ENLACE 9 math score, above-median ENLACE 9 Spanish
score, missing ENLACE 9 score, high parental education, missing parental ed-
ucation, and middle school graduate status. For example, there is one cell for
ninth grade females with high middle school GPAs, low ENLACE 9 math scores,
high ENLACE 9 Spanish scores, and high parental education.19 The ENLACE
9 covariates serve as measures of academic ability that do not directly determine
the feasible set (as the placement test score does), allowing heterogeneous prefer-
ences with respect to ability while maintaining the stability approach.20 Middle
school GPA plays a similar role, while allowing for heterogeneity with respect

18These two modeling choices are similar to those taken by Abdulkadiroğlu et al. (2020), who estimate
preferences separately by borough and aggregate all schools outside a student’s borough into an outside
option.

19Some cells are empty by definition. For example, no cell has both high and missing parental educa-
tion. Middle school graduates participated in COMIPEMS later than their ninth grade year, so they are
not matched to the ENLACE 9. Covariate cells for middle school graduates are thus always classified as
“missing ENLACE 9 score.”

20Partitioning by placement test score would result in all below-median students lacking elite programs
in their feasible sets, precluding estimation of heterogeneous tastes for these program types.
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to academic skills beyond those captured by standardized tests. Parental ed-
ucation is a proxy for socioeconomic status, while middle school graduates are
sufficiently different from “standard” ninth grade COMIPEMS participants that
their educational objectives and preferences are likely quite distinct.21

The vector Zij includes program type indicators, a constant (to allow utility
relative to the outside option to vary with student characteristics), and distance
from home to school. We estimate the model via maximum likelihood. The set
of parameters includes the region-year-specific scale factor applied to ηij due to
the normalization of the base category distance parameter.

B. STEM gender gap decomposition

We use a nonlinear decomposition procedure to separate the roles of preferences,
placement test scores, and other student characteristics in generating the STEM
assignment gap. We follow the technique described in Fairlie (1999, 2005, 2017),
which extends the Oaxaca-Blinder decomposition (Kitagawa, 1955; Blinder, 1973;
Oaxaca, 1973) to nonlinear models. We summarize the decomposition procedure
here and provide details in online Appendix B. For simplicity, this discussion
relates to the probability of STEM assignment unconditional on assignment, but
the appendix shows how we apply the procedure to decompose the gap among
assigned students.
The gender difference in the probability of STEM assignment P (S = 1) for

males (M = 1) and females (M = 0) can be decomposed into a component
due to differences in all observable student characteristics excluding gender X̃i =
{Xi, dddi, si} with gender-specific joint distributions F (X̃|M) and a component due
to differences in preferences:

P (S = 1|M = 1)− P (S = 1|M = 0) =∫
P (S = 1|M = 1, X̃)dF (X̃|M = 1)−

∫
P (S = 1|M = 0, X̃)dF (X̃|M = 0) =∫

P (S = 1|M = 1, X̃)dF (X̃|M = 1)−
∫

P (S = 1|M = 1, X̃)dF (X̃|M = 0)︸ ︷︷ ︸
Characteristic component

+

∫
P (S = 1|M = 1, X̃)dF (X̃|M = 0)−

∫
P (S = 1|M = 0, X̃)dF (X̃|M = 0)︸ ︷︷ ︸

Preference component

.

(3)

We predict assignment probabilities for each feasible student-program using

21Assuming stability allows for less flexible parameterization of utility than similar approaches based on
truth-telling because it uses assignments rather than the full sequence of choices in the student’s portfolio.
In particular, we cannot estimate separate program fixed effects by covariate cell as in Abdulkadiroğlu
et al. (2020) because most covariate cells have several programs to which no students were assigned.
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the conditional logit estimates, and sum over all STEM programs to predict

P
(
Si = 1|Mi, X̃i

)
. The first and last terms of equation 3 correspond to mean

predicted probabilities of male and female STEM assignment, respectively. The
middle terms relate to STEM assignment probabilities of female students in the
counterfactual setting where they have “male preferences.” Given our parameter-
ization of preferences, this simply requires reassigning each female i to covariate
cell c(Xi,M = 1) and recomputing the predicted probabilities.
The preference component gives the contribution of preference differences to

the STEM gap, holding female observables constant. The characteristic compo-
nent gives the difference in the STEM gender gap due to gender differences in
observables, holding preferences constant.22 Following the simulation procedure
from Fairlie (2017), we also estimate the separate contributions of each student
characteristic by matching all females to randomly drawn males from the same
region-year, sequentially replacing the elements of X̃i with their matched male
counterparts, and recomputing the predicted probabilities at each step. Changing
si affects the student’s feasible set Ji, allowing us to estimate how differences in
placement test scores contribute to the STEM gap.23

As a counterfactual exercise, this decomposition procedure does not account for
the fact that program capacities are limited, so shifts in demand due to changes in
female preferences or covariates are not permitted to affect program-level cutoff
scores and thus assignment probabilities. The counterfactual simulations in the
next section will allow for such general equilibrium effects.

C. Counterfactual simulations

We use assignment simulations to assess model fit, to obtain counterfactual
STEM gaps while accounting for general equilibrium effects on program cutoffs,
to understand the welfare implications of gender differences in placement test
scores, and to contextualize the magnitude of the STEM gap by illustrating the
extent of affirmative action that would be required to close it.
We summarize the procedure here, while online Appendix B gives more de-

tail. First, the estimated preference parameters (actual or counterfactual) and
student-program characteristics are used to simulate preference orderings over all
programs and the outside option of non-assignment, for each student in the sam-
ple. We draw unobserved tastes from the appropriately scaled extreme value type
I distribution and rank programs by simulated utilities.24 Second, these prefer-
ence orderings are submitted to the assignment mechanism, which is implemented

22Males are the reference group in this decomposition; we hold preferences constant at male preferences
when estimating the characteristic component.

23Online Appendix B explains the computation of standard errors and the implementation of this
“detailed decomposition,” including the use of repeated simulations to eliminate path dependence.

24We combine these rankings with the observed portfolios of the small sample of assignable students
who were excluded from the estimation sample (i.e., adults and students with addresses that were either
invalid or outside of the COMIPEMS boundary). This results in “portfolios” for the universe of assignable
students.
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using the actual or counterfactual priority structure to obtain simulated program
assignments.25 This simulation differs from the actual COMIPEMS assignment
process because it uses students’ full preference orderings rather than shorter
choice portfolios. This follows the approach of Artemov, Che and He (2021), who
note that this is valid under the stability assumption.
Finally, we simulate changes in overall and gender-specific consumer surplus to

show how gender differences in placement test scores affect the level and distribu-
tion of welfare. Differences in expected consumer surplus between the status quo
and a counterfactual result from differences in the feasible sets they generate, J 0

i
and J 1

i (Small and Rosen, 1981; Williams, 1977):

(4) ∆E (CSirt) = ln

∑
j∈J 1

i

exp(V̂ijrt)

− ln

∑
j∈J 0

i

exp(V̂ijrt)

 .

Equation 4 is used to compute student-level changes in expected consumer sur-
plus, which are then averaged in the full or gender-specific sample.

IV. Results

The stability model fits the data well. Simulating preference orderings from the
model and implementing the assignment mechanism yields overall and component-
specific gender gaps that are nearly identical to the actual gender gaps (online Ap-
pendix Table C1). Simulated program-level cutoff scores also correspond closely
to those observed in the data (online Appendix Figure C1), with an assignment
count-weighted correlation of 0.98. Comparing stability to the weak truth-telling
model following the test proposed by Fack, Grenet and He (2019), we overwhelm-
ingly reject the truth-telling model (χ2(3316) = 191618, p < 0.00001).

A. Student preferences

Table 3 summarizes female preferences for different program types relative to
the base category of traditional programs, obtained by regressing estimated pro-
gram fixed effects δ̂jrt on program type indicators. The omitted student covariate
cell is females in middle school who have high parental education and above-
median middle school GPA, ENLACE 9 math, and Spanish scores. The δ̂jrt
correspond to this cell’s program-specific mean utilities, and their utility from
distance is −1, so coefficients may be interpreted as marginal willingness to travel
(WTT) for this group. Column 1 uses driving distance—our preferred distance
measure—and shows that these females value elite STEM schools highly, with a
marginal WTT of 18.5 km. WTT for elite non-STEM programs is even higher, at

25For this step, the “programs” that aggregate far-away alternatives are replaced with a randomly
drawn feasible alternative among those that were aggregated.
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27.0 km. Preferences for non-elite programs go in the opposite direction: WTT
for non-elite STEM programs is -10.4 km, slightly more negative than the -7.6
km for technical non-STEM programs. Columns 2 and 3 present the models
using straight-line distance and travel time, respectively, and show broadly sim-
ilar patterns. The straight-line distance estimates are smaller in magnitude, as
straight-line distances are shorter than driving distances. WTT for elite STEM
programs is 14.7 km. In the travel time model, WTT for elite STEM programs
is 50.8 minutes.
Table 4 reports gender differences in preferences, obtained by differencing es-

timated preference parameters between male and female covariate cells that are
identical except for gender:

(5) ∆̂g =

∫ [
β̂c(X,M=1)rt − β̂c(X,M=0)rt

]
dF (X, r, t)

Under the assumption of constant V ar(ηij) across covariate cells, ∆̂g reflects
preference differences weighted by the number of students in the cell-region-year.
Because cell-specific utilities from distance deviate very little from−1, we continue
to interpret marginal utilities as WTT.
We find significant gender differences in preferences for STEM programs. Col-

umn 1 shows our preferred estimates using driving distance. WTT for elite STEM
and non-elite STEM programs are 5.0 and 2.6 km higher for males than females,
respectively. Preference differences for non-STEM programs are more modest:
males have 0.9 km lower WTT for elite non-STEM programs and 0.2 km higher
WTT for technical non-STEM programs. Males have lower preferences for re-
maining unassigned. Differences in preferences over distance are very small, with
males expressing 2% lower marginal disutility for distance compared to females.
The straight-line distance model in column 2 and travel time model in column
3 show similar patterns in gender differentials for STEM programs, with higher
WTT for males for elite STEM and non-elite STEM programs. Gender differences
over technical non-STEM preferences are noisier under the travel time model, but
all three models show similarly small gender differences in distance preferences.
For the remaining results, we use driving distance as our preferred distance mea-
sure.
Online Appendix Table C2 shows these gender differences in preferences by

region. Small differences in non-STEM estimates exist across regions, but the
STEM differentials are largely similar. Specifically, male elite STEM WTT is
higher by 4.4 km, 5.7 km, and 5.2 km in the Federal District, East State of
Mexico, and West State of Mexico, respectively. Similarly, males more strongly
prefer non-elite STEM programs by 2.3 km, 2.7 km, and 3.3 km in the Federal
District, East State of Mexico, and West State of Mexico, respectively. The
remainder of the paper presents results aggregated across all regions.26

26An additional concern in identifying preferences is that students do not fully understand the pro-



17

Figure 4 summarizes differences in STEM preferences with respect to other stu-
dent demographics. These are estimated as in equation 5 except that we estimate
differences separately by gender and the comparisons are between high and low
levels of the specified covariate. In Panel A, we find both males and females with
high parental education, high ENLACE 9 math scores, and high middle school
GPA have stronger preferences for elite STEM schools, with WTT differentials on
the order of 1 to 2 km. High ENLACE 9 Spanish scores predict the opposite, with
approximately 1 km lower WTT for elite STEM schools. Preference heterogeneity
in these dimensions is much smaller than the first-order gender differences. Panel
B shows differences for non-elite STEM programs and finds that high ENLACE 9
math scores predict stronger preference for non-elite STEM programs while high
parental education and middle school GPA are associated with weaker preferences
for non-elite STEM. Here, there are larger gender-by-covariate differentials. In
general, males in each group have higher (less negative) marginal WTT for non-
elite STEM. Online Appendix Table C3 shows the comparisons for the remaining
assignment preference dimensions.

B. STEM gender gap decomposition

Table 5 shows the results of the decomposition analysis, beginning with the
overall STEM gap in column 1. Gendered preferences play a very large role,
contributing 13.1 p.p. (117.5%) to the overall 11.1 p.p. gap. Overall differences
in student characteristics contribute negatively to the gap, driven almost entirely
by gender differences in placement test scores (-1.6 p.p. or -14.5%). In other
words, the STEM gap would be larger than 11.1 p.p. under similar placement
score distributions, since giving females higher priority makes them less likely to
be assigned to STEM programs. Thus, preference differences are the predominant
driver of the gender gap in the overall STEM sector, while lower female placement
scores attenuate the gap. Very little of the gap is explained by gender differences
in ENLACE 9 scores, parental education, and distance to schools.
The findings are quite different when separately decomposing the elite and non-

elite STEM gaps in columns 2 and 3. Preferences explain a smaller proportion
(87.5%) of the elite gap. Placement test score differences explain 33.3% of the
elite gap, confirming the importance of the access constraints due to lower fe-
male placement test scores. Gender differences in middle school GPA contribute
negatively to the elite gap by 19.4%. Again, this is because females have higher
middle school GPAs and higher-GPA students have higher marginal utilities from
elite schools.
The origins of the non-elite STEM gap are somewhat different. Preference

differences are the overwhelming determinant of the non-elite gap, explaining

grams available to them (Dynarski et al., 2021), despite the large amount of information available in
this context. To address this, we examine the results from the Federal District only, where options are
more salient since students reside close to all program types. Here, we continue to find strong gender
differentials for STEM programs.
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148.4% of it. Placement test score differences attenuate the gap significantly (-
63.9%) because low overall demand for non-elite STEM programs makes them less
competitive and thus a more likely destination for lower-scoring students. Gender
differences in middle school GPA increase the non-elite gap for the same reason
that they decrease the elite gap: higher-GPA students have lower preference for
non-elite programs, and girls have higher GPAs. Overall, the aggregate STEM gap
is almost entirely due to preferences, while access constraints play an important
role in widening the elite gap and narrowing the non-elite gap.

C. Counterfactual simulations

Table 6 presents the results of the counterfactual simulations. These account
for general equilibrium effects that arise from changes to program cutoffs when
preferences, placement test scores, or assignment priority structures are altered.
Figure 5 illustrates counterfactual impacts on the STEM gap across the placement
test score distribution. We first replace female preferences with male preferences
using the same procedure from the decomposition exercise, and then implement
the simulation procedure described in Section III.C. Similar to the partial equilib-
rium decomposition, the overall STEM gap reverses (a change of -111.1%). The
elite STEM gap decreases substantially (-84.8%) and the non-elite STEM gap
reverses (-138.3%). These results suggest that aligning male and female prefer-
ences would have large effects on both elite and non-elite STEM gaps, even after
accounting for endogenous changes in cutoffs. This preference alignment would
not widen the overall elite education gap (inclusive of both STEM and non-STEM
elite options): Panel A of online Appendix Figure C2 shows that the overall elite
gap is weakly reduced everywhere in the test score distribution. Put differently,
gender differences in STEM preferences are currently leading some elite-eligible
females to forego an elite education altogether.

In a second scenario, we explore the independent role played by gender differ-
ences in placement test scores. In contrast to the decomposition exercise, we leave
preferences unchanged but match females to males who scored similarly on their
ENLACE 9 exams and draw placement test scores from these matching males.27

Here, the overall STEM gap grows 16.8% as females are given higher priority and
assigned to their more preferred programs, which tend to be non-STEM. However,
giving females male placement test scores reduces the elite STEM gap by 22.3%,
driven by students with scores near the margin of admission to elite schools. The
impacts are similar to the results of the decomposition, but differ in part because
the decomposition imposes male preferences while the counterfactual allows pref-
erences to differ. The male advantage in placement test scores conditional on
ENLACE 9 scores has welfare implications: males have higher average welfare

27Specifically, we partition the students by ENLACE 9 subscore deciles, region, and year. We then
match females to males drawn from the same partition, with replacement, maintaining the placement
test score ordering among females within the same partition.
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under the status quo (0.69 km) and females have lower welfare (-0.64 km), with
no aggregate welfare effects.28

Finally, we examine two counterfactual policies aimed at closing the STEM
gap. They serve as a benchmark for the extent of intervention in the assignment
mechanism required to close the STEM gap in the absence of changes in gendered
preferences or the gendered nature of placement test scores. A STEM-focused
affirmative action (AA) policy would need to award females 11 additional points
(0.6 SD) for priority at STEM schools to (approximately) close the STEM gap.
This more than closes the elite STEM gap (-132.0%), where access constraints
are the most binding, again driven by large effects for students with scores near
the margin of elite admission. This policy only reduces the non-elite STEM gap
by 55.8% due to the predominant role of gendered preferences. The aggregate
welfare effects of this policy are small, with males losing 0.48 km, females gaining
0.35 km, and aggregate losses of 0.05 km. In contrast, a general AA policy giving
females 11 points higher priority at all programs increases the overall STEM gap
by 37.7%, pairing a 121.1% increase in the non-elite STEM gap with a 42.9%
reduction in the elite STEM gap.

D. Explaining gendered preferences

While explaining the causal factors behind gender differences in STEM pref-
erence is beyond the scope of this paper, we explore a set of possible factors
using school census data (SEP, 2012) to describe school characteristics by pro-
gram type (online Appendix Table C4). The school census provides data for
aggregate campuses as opposed to COMIPEMS programs, so we classify non-
elite STEM campuses as those that have 50 percent or more students in STEM
programs. Compared to elite non-STEM schools, elite STEM schools have fewer
female teachers (35.4% versus 47.1%) and fewer female staff. There is a similar
but smaller differential among non-elite schools. Consistent with COMIPEMS
assignments, STEM schools have fewer females in their entering classes. Thus,
gendered preferences could be driven by a lack of female role models and female
peers.
Academic outcome measures are similar between non-elite STEM and techni-

cal non-STEM schools. However, within elite schools, elite STEM schools have
lower graduation rates (59.9% versus 69.2%) and substantially higher failure rates
(43.6% versus 7.6% of students failing between one and five courses) than elite
non-STEM schools. Thus, female preference for school completion may also con-
tribute to gendered STEM preferences. Finally, within each school type, females
have higher graduation rates and lower failure rates than males. In this context,
females are more likely to persist in STEM than males, in contrast to lower female
STEM completion rates elsewhere (Griffith, 2010; Speer, 2023).29 However, the

28Online Appendix Figure C3 shows welfare effects across the distribution. Welfare effects are largest
for students with scores near the margin of elite admission.

29Similarly, Dustan, de Janvry and Sadoulet (2013) shows no evidence of a gender differential in the
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female graduation advantage is larger in non-STEM schools, indicating that the
gender gap in STEM completion may be larger than the assignment gap we study
here. At the same time, the labor force transition analysis (online Appendix Ta-
ble A2) shows that females are as likely or more likely than males to continue
into STEM study and occupations after STEM high school, suggesting that the
STEM gender gap may be similar at later stages.

V. Discussion

Our findings have implications for reducing the gender gap, especially in cen-
tralized admissions systems. The role of access constraints implies that, to the
extent that closing the STEM gender gap in elite or otherwise competitive pro-
grams is a policy goal, there may be a role for focused affirmative action or ad-
missions policies that deemphasize high stakes test scores.30 Still, such measures
may be insufficient given the importance of gendered preferences, particularly in
the case of non-elite STEM programs. In light of the observed wage premium
for STEM occupations, including among less-educated workers, and the linkage
between STEM studies and later STEM employment, there may be a role for
interventions that increase female demand for STEM. A growing body of evi-
dence shows that a variety of interventions can be effective in changing students’
choices, suggesting that such efforts may be viable complements to assignment
policy reforms.31
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Nollenberger, Natalia, Núria Rodŕıguez-Planas, and Almudena Sevilla.
2016. “The math gender gap: The role of culture.” American Economic Review,
106(5): 257–261.

Oaxaca, Ronald. 1973. “Male-female wage differentials in urban labor markets.”
International economic review, 693–709.

Ortega Hesles, Maria Elena, and Shaun M. Dougherty. 2017. “Academic
Program Choice in Secondary Education: Regression Discontinuity Evidence
from Mexico City.” Unpublished.

OSRM. 2023. “Open Source Routing Machine.”

Ostry, Jonathan David, Jorge Alvarez, Raphael A Espinoza, and Chris
Papageorgiou. 2018. Economic gains from gender inclusion: New mecha-
nisms, new evidence. International Monetary Fund.



29

Owen, Ann L. 2010. “Grades, gender, and encouragement: A regression discon-
tinuity analysis.” The Journal of Economic Education, 41(3): 217–234.

Pathak, Parag A, and Peng Shi. 2021. “How well do structural demand
models work? Counterfactual predictions in school choice.” Journal of Econo-
metrics, 222(1): 161–195.

Polikoff, Morgan, Q Tien Le, Robert W. Danielson, Gale M. Sina-
tra, and Julie A. Marsh. 2018. “The impact of speedometry on student
knowledge, interest, and emotions.” Journal of Research on Educational Effec-
tiveness, 11(2): 217–239.

Pop-Eleches, Cristian, and Miguel Urquiola. 2013. “Going to a bet-
ter school: Effects and behavioral responses.” American Economic Review,
103(4): 1289–1324.

Porter, Catherine, and Danila Serra. 2019. “Gender differences in the choice
of major: The importance of female role models.” American Economic Journal:
Applied Economics.

Rakshit, Sonali, and Soham Sahoo. 2023. “Biased teachers and gender gap in
learning outcomes: Evidence from India.” Journal of Development Economics,
161: 103041.

Rask, Kevin. 2010. “Attrition in STEM fields at a liberal arts college: The
importance of grades and pre-collegiate preferences.” Economics of education
review, 29(6): 892–900.

Rees-Jones, Alex, and Ran Shorrer. 2023. “Behavioral Economics in Educa-
tion Market Design: A Forward-Looking Review.” Journal of Political Economy
Microeconomics, 1(3): 557–613.

Rothwell, Jonathan. 2013. The hidden STEM economy. Metropolitan Policy
Program at Brookings.

Saygin, Perihan O. 2020. “Gender bias in standardized tests: evidence from a
centralized college admissions system.” Empirical Economics, 59(2): 1037–1065.

Schneeweis, Nicole, and Martina Zweimüller. 2012. “Girls, girls, girls: Gen-
der composition and female school choice.” Economics of Education Review,
31(4): 482–500.

Schøne, P̊al, Kristine von Simson, and Marte Strøm. 2020. “Peer gender
and educational choices.” Empirical Economics, 59(4): 1763–1797.
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SEP, Secretaŕıa de Educación Pública. 2008c. “School location data.
Comisión Metropolitana de Instituciones Públicas de Educación Me-
dia Superior de la Zona Metropolitana de la Ciudad de México
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Panel A. Elite schools

SchoolsSchools
Elite STEM
Elite non-STEM

RegionsRegions
Federal District
State of Mexico, East
State of Mexico, West

Panel B. Non-elite schools

SchoolsSchools
Non-elite STEM only
Technical non-STEM only
Non-elite STEM and technical non-STEM
Traditional

RegionsRegions
Federal District
State of Mexico, East
State of Mexico, West

Figure 1. High schools in the COMIPEMS zone

Note: Markers correspond to public high schools in the COMIPEMS zone. School classifications are on
the basis of programs available for students to choose in the choice process. Regions are those used to
partition the student sample in the preference estimation.



33

0
.0

05
.0

1
.0

15
.0

2
De

ns
ity

20 40 60 80 100 120
Test score

Male Female

Panel A. Placement test

0
.1

.2
.3

.4
De

ns
ity

-2 0 2 4 6
Normalized exam score

Male Female

Panel B. ENLACE 9 math

0
.1

.2
.3

.4
De

ns
ity

-4 -2 0 2 4
Normalized exam score

Male Female

Panel C. ENLACE 9 Spanish

0
.1

.2
.3

.4
De

ns
ity

-2 -1 0 1 2
Normalized GPA

Male Female

Panel D. Middle school GPA

Figure 2. Academic achievement distributions, by gender

Note: Plots are for all students in analysis sample in the 2007 and 2008 COMIPEMS cycles. Placement
test score is raw score out of 128. ENLACE 9 subscores are nationally normed. Middle school GPA is
normalized by year within the analysis sample.
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Note: The non-elite and elite STEM gap components are stacked, so that the overall STEM gap is
represented by the top of the stack. Calculated percentages are for all students in analysis sample
assigned to a program by the placement algorithm in the 2007 and 2008 COMIPEMS cycles. Test score
percentiles are from the pooled (male and female) distribution of scores within each year.
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Figure 4. STEM preferences with respect to student characteristics

Note: Points are estimated differences in gender-specific average marginal utilities from the program
type indicated in the panel title between students with high and low levels of the indicated characteristic,
following Section IV.A. For example, in Panel A, the top “Middle school GPA” entry is the estimated
difference in marginal utility from elite STEM programs between males with above-median GPA and
males with below-median GPA. Bars correspond to 95% confidence intervals. The “dif” entries in the
margin are differences between the gender-specific estimates, with standard errors in parentheses.
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Figure 5. Simulated effects of preference, score distribution, and priority structure changes

on STEM gap and its components, by placement test percentile

Note: Lines represent percentage point differences between the simulated STEM gaps under the status
quo and the counterfactual indicated in the panel title, conditional on the placement test percentile.
Simulated changes are means over 100 independent simulations of the assignment process accounting for
uncertainty in student preference parameters, idiosyncratic student preferences, and random tie-breakers
in assignment. Simulations are as described in Section III.C and online Appendix B. Dashed vertical
lines indicate the percentiles corresponding to the lowest and highest elite program cutoff scores.
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Table 1—Academic, choice, and demographic summary statistics, by gender

(1) (2) (3)
Male Female Difference

Academic achievement

Placement test score 67.84 63.93 3.91
(19.521) (18.735) (0.054)

ENLACE 9 math subscore (normalized) 0.54 0.39 0.14
(1.035) (0.986) (0.003)

ENLACE 9 Spanish subscore (normalized) 0.44 0.65 -0.21
(0.925) (0.869) (0.003)

Middle school GPA (normalized) -0.29 0.24 -0.54
(0.955) (0.966) (0.003)

School choices

Total number of choices listed 9.36 9.55 -0.19
(3.734) (3.747) (0.011)

Percent of choices that are elite STEM 10.52 6.56 3.96
(17.991) (12.998) (0.045)

Percent of choices that are non-elite STEM 21.00 15.02 5.98
(24.313) (20.924) (0.065)

Percent of choices that are elite non-STEM 30.10 35.21 -5.11
(30.400) (31.333) (0.088)

Percent of choices that are technical non-STEM 9.36 10.46 -1.09
(15.347) (16.447) (0.045)

Percent of choices that are traditional academic 29.01 32.75 -3.74
(26.878) (27.831) (0.078)

Average driving distance to all choices (km) 12.12 12.09 0.03
(5.987) (5.875) (0.017)

Demographics and geography
High parental education (high school or more) 50.97 48.32 2.65

(49.991) (49.972) (0.152)
Middle school graduate 25.03 17.96 7.07

(43.317) (38.382) (0.116)
Driving distance to closest elite STEM program (km) 11.52 11.57 -0.05

(6.608) (6.631) (0.019)
Driving distance to closest non-elite STEM program (km) 2.87 2.87 -0.00

(1.919) (1.951) (0.005)

Observations 239969 257246 497215
Note: Calculations are for all students in the analysis sample for the the 2007 and 2008 COMIPEMS
cycles. Standard deviations are in parentheses in columns 1 and 2; standard errors are in parentheses in
column 3. Placement test score is raw score out of 128. ENLACE 9 subscores are nationally normed.
Middle school GPA is normalized by year within analysis sample.
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Table 2—Student assignment outcomes, by gender

(1) (2) (3)
Male Female Difference

Panel A. Program type conditional on assignment

STEM assigned program (elite or non-elite) 38.7 27.6 11.1
(48.70) (44.68) (0.14)

Elite STEM assigned program 10.2 4.6 5.6
(30.32) (20.93) (0.08)

Non-elite STEM assigned program 28.4 23.0 5.5
(45.11) (42.06) (0.13)

Elite non-STEM assigned program 17.2 18.5 -1.2
(37.77) (38.82) (0.12)

Technical non-STEM assigned program 12.8 15.7 -2.9
(33.40) (36.41) (0.11)

Traditional academic assigned program 31.3 38.2 -6.9
(46.37) (48.59) (0.15)

Driving distance to assigned program (km) 10.1 9.8 0.3
(7.98) (7.88) (0.02)

Observations 211899 212483 424382

Panel B. Assignment

Unassigned 11.7 17.4 -5.7
(32.14) (37.91) (0.10)

Observations 239969 257246 497215
Note: Calculations in Panel A are for all students in the analysis sample who were assigned to a program
by the placement algorithm in the 2007 or 2008 COMIPEMS cycles. Calculations in Panel B do not
condition on assignment. Indicator variables are percentages. Standard deviations are in parentheses in
columns 1 and 2; standard errors are in parentheses in column 3.
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Table 3—Female preferences for program types, by distance measure

(1) (2) (3)
Elite STEM 18.47 14.67 50.76

(1.295) (1.035) (3.320)

Non-elite STEM -10.35 -8.12 -22.77
(0.644) (0.500) (1.590)

Elite non-STEM 26.97 21.25 72.20
(1.300) (1.109) (3.171)

Technical non-STEM -7.61 -5.98 -15.93
(0.712) (0.551) (1.816)

Observations 1477 1477 1477
Adjusted R2 0.786 0.770 0.815
Fixed effects Region-year Region-year Region-year
Distance variable Driving (km) Straight-line (km) Time (min)

Note: Coefficients are from a regression of region-year-specific program fixed effects δ̂jrt on program
type indicators and region-year fixed effects, which allow utility of the outside option to vary by region-
year. Regressions weight by number of students in region-year estimation cell. Distance variable is the
measure of home to school distance used in estimating the preference model. Base category is traditional
academic program (non-elite, non-STEM). Coefficients correspond to average marginal utilities for the
base covariate cell: females in middle school who have high parental education and above-median middle
school GPA, ENLACE 9 math, and Spanish scores. Standard errors clustered at the program level are
in parentheses.
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Table 4—Gender differences in preferences, by distance measure

(1) (2) (3)
Elite STEM 5.01 3.91 11.55

(0.168) (0.132) (0.394)
Non-elite STEM 2.61 2.02 5.68

(0.051) (0.040) (0.122)
Elite non-STEM -0.94 -0.78 -2.41

(0.217) (0.175) (0.457)
Technical non-STEM 0.24 0.19 -0.28

(0.060) (0.047) (0.142)
Unassigned -0.33 -0.25 -0.37

(0.070) (0.054) (0.183)
Distance 0.02 0.02 0.02

(0.002) (0.003) (0.002)

Distance variable Driving (km) Straight-line (km) Time (min)
Note: Entries are estimated differences between male and female students in mean marginal utilities
from the indicated program characteristics, following equation 5 in Section IV.A. Distance variable is
the measure of home to school distance used in estimating the preference model. Standard errors are in
parentheses.
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Table 5—Decomposition of STEM gender gaps into preference and student characteristic

components

(1) (2) (3)
Overall Elite Non-elite
gap gap gap

Male STEM assignment 38.7 10.2 28.4
Female STEM assignment 27.6 4.6 23.0
STEM gender gap 11.1 5.6 5.5
Contribution of preference differences 13.1 4.9 8.1

(0.06) (0.03) (0.06)
[117.5%] [87.5%] [148.4%]

Contributions of differences in student characteristics
Placement test score -1.6 1.9 -3.5

(0.02) (0.02) (0.01)
[-14.5%] [33.3%] [-63.9%]

ENLACE 9 math subscore 0.1 0.0 0.0
(0.01) (0.01) (0.01)
[0.6%] [0.8%] [0.4%]

ENLACE 9 Spanish subscore 0.1 0.0 0.0
(0.02) (0.01) (0.01)
[0.7%] [0.8%] [0.6%]

Middle school GPA -0.1 -1.1 1.0
(0.05) (0.03) (0.04)
[-1.2%] [-19.4%] [17.6%]

Parental education -0.1 0.0 -0.1
(0.01) (0.00) (0.01)
[-0.5%] [0.4%] [-1.4%]

Middle school graduate -0.4 -0.2 -0.1
(0.02) (0.01) (0.02)
[-3.2%] [-3.9%] [-2.4%]

Distance 0.1 0.0 0.0
(0.00) (0.00) (0.00)
[0.7%] [0.8%] [0.6%]

Total -1.9 0.7 -2.6
(0.06) (0.03) (0.06)
[-17.5%] [12.5%] [-48.4%]

Note: Decomposition follows the procedure described in Section III.B and online Appendix B. Column
headers give the STEM gap being decomposed. Entries are in percentage points. Standard errors are in
parentheses. Percent contributions to the gap are in brackets. Decomposition uses estimates from the
model using driving distance as the measure of distance.
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Table 6—Simulated effects of preference, score distribution, and priority structure changes

on STEM gender gap and welfare

(1) (2) (3) (4) (5) (6)
Total Elite Non-elite Male Female Overall
gap gap gap welfare welfare welfare

Male preferences -12.3 -4.8 -7.5
(0.17) (0.09) (0.16)

[-111.1%] [-84.8%] [-138.3%]
Male test score distribution 1.9 -1.3 3.1 -0.69 0.64 -0.00

(0.10) (0.07) (0.08) (0.01) (0.01) (0.01)
[16.8%] [-22.3%] [57.2%]

STEM AA -10.5 -7.4 -3.0 -0.48 0.35 -0.05
(0.08) (0.05) (0.08) (0.01) (0.00) (0.00)
[-94.5%] [-132.0%] [-55.8%]

General AA 4.2 -2.4 6.6 -1.68 1.58 0.01
(0.10) (0.05) (0.10) (0.02) (0.02) (0.01)
[37.7%] [-42.9%] [121.1%]

Baseline gap 11.1 5.6 5.5
(0.18) (0.09) (0.17)

Note: Rows represent counterfactual preferences, test score distributions, or priority structures. “STEM
AA” refers to a policy in which female applicants receive 11 additional points (0.6 SD) on their priority
score for STEM-designated programs. “General AA” gives female applicants 11 additional points (0.6
SD) on their priority score for all programs. Columns 1 through 3 are simulated changes in the respec-
tive STEM gap, compared to the baseline gap, using the procedure described in Section III.C. Simulated
changes in STEM gaps are in percentage points. Simulated changes are means over 100 independent
simulations of the assignment process accounting for uncertainty in student preference parameters, id-
iosyncratic student preferences, and random tie-breakers in assignment. Standard deviations of the
simulated changes are in parentheses. Percent changes compared to baseline are in brackets. Baseline
gap is the simulated level of the respective STEM gap under the status quo priority structure. Simulated
welfare changes are in columns 4 through 6, with standard deviations of the simulated changes in paren-
theses. Simulations use estimates from the model using driving distance as the measure of distance.


